Skip to main content

2024 | OriginalPaper | Buchkapitel

j-Multiple, k-Component Order Neighbor Connectivity

verfasst von : Alexis Doucette, Charles Suffel

Erschienen in: Combinatorics, Graph Theory and Computing

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Consider a network modeled by a graph G on n nodes and e edges. There exist several parameters to determine the vulnerability of G. One such parameter is the domination number, which measures the minimum number of nodes necessary in a set so that its closed neighborhood is the entire graph. Multiple domination, sometimes referred to as j-domination, is a variety of domination that requires every node to either be in the set or adjacent to at least j nodes from it. The vulnerability parameter k-component order neighbor connectivity is an extension of domination and is defined as the minimum number of nodes that when removed along with their neighbors leave only components of order less than k. The new parameter, j-multiple, k-component order neighbor connectivity, denoted \(\kappa _{nc,j}^{(k)}\), extends both concepts and is defined as the minimum number of nodes that need to be removed, along with their neighbors, such that the surviving subgraph contains only components of order at most k and every node outside of the set that is adjacent to it is adjacent to at least j nodes from it. The complexity of computing the value for this parameter is NP-hard since it coincides with j-domination when k is 1. Here we introduce this new parameter, establish its bounds, and compare it to several other previously established parameters. We also establish formulas for \(\kappa _{nc,j}^{(k)}\) for several classes of graphs, including complete and complete bipartite graphs as well as paths, cycles, wheels, and complete grid graphs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alavi, Y., Chartrand, G., Lesniak, L., Lick, D.R., and Wall, C.E. Graph Theory with Applications to Algorithms and Computer Science. American Mathematical Society Colloquium Publications, 1962. Alavi, Y., Chartrand, G., Lesniak, L., Lick, D.R., and Wall, C.E. Graph Theory with Applications to Algorithms and Computer Science. American Mathematical Society Colloquium Publications, 1962.
2.
Zurück zum Zitat Chartrand, G., L. Lesniak, and P. Zhang. Graphs and Digraphs. Chapman and Hall/CRC, 5th edition, 2011. Chartrand, G., L. Lesniak, and P. Zhang. Graphs and Digraphs. Chapman and Hall/CRC, 5th edition, 2011.
3.
Zurück zum Zitat Doucette, A., A. Muth, and C. Suffel (2018). An exceptional invariant, k-component order neighbor connectivity, A Generalization of Domination Alteration Sets in Graphs. Congressus Numerantium230, 167–190.MathSciNet Doucette, A., A. Muth, and C. Suffel (2018). An exceptional invariant, k-component order neighbor connectivity, A Generalization of Domination Alteration Sets in Graphs. Congressus Numerantium230, 167–190.MathSciNet
4.
Zurück zum Zitat Fink and Jacobson. n-domination in graphs. Graph Theory with Applications to Algorithms and Computer Science, pages 283–300, 1985. Fink and Jacobson. n-domination in graphs. Graph Theory with Applications to Algorithms and Computer Science, pages 283–300, 1985.
5.
Zurück zum Zitat Haynes, T. W., S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, Inc., 1998. Haynes, T. W., S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, Inc., 1998.
6.
Zurück zum Zitat Luttrell, K. On the Neighbor-Component Order Connectivity Model of Graph Theoretic Networks. PhD thesis, Stevens Institute of Technology, 2013. Luttrell, K. On the Neighbor-Component Order Connectivity Model of Graph Theoretic Networks. PhD thesis, Stevens Institute of Technology, 2013.
7.
Zurück zum Zitat Mohan, J.J. and Kelkar, I. Restrained 2-domination number of complete grid graph. International Journal of Applied Mathematics and Computations, 4:352–358, 2012. Mohan, J.J. and Kelkar, I. Restrained 2-domination number of complete grid graph. International Journal of Applied Mathematics and Computations, 4:352–358, 2012.
8.
Zurück zum Zitat Ore, O. Theory of Graphs. American Mathematical Society Colloquium Publications, 1962.CrossRef Ore, O. Theory of Graphs. American Mathematical Society Colloquium Publications, 1962.CrossRef
9.
Zurück zum Zitat Shaheen, R., Mahfud, S. and Almanea, K. On the 2-domination number of complete grid graphs. Open Journal of Discrete Mathematics, 7:32–50, 2017.CrossRef Shaheen, R., Mahfud, S. and Almanea, K. On the 2-domination number of complete grid graphs. Open Journal of Discrete Mathematics, 7:32–50, 2017.CrossRef
Metadaten
Titel
j-Multiple, k-Component Order Neighbor Connectivity
verfasst von
Alexis Doucette
Charles Suffel
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-62166-6_12