Skip to main content
Erschienen in: Wireless Personal Communications 3/2020

05.06.2020

Joint RSSD/AOA Source Localization: Bias Analysis and Asymptotically Efficient Estimator

verfasst von: Ali Heydari, Masoudreza Aghabozorgi

Erschienen in: Wireless Personal Communications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we study blind source localization problem based on the joint received signal strength difference (RSSD) and angle of arrival (AOA) measurements with unknown transmit power of source. Since RSSD and AOA measurements are uncorrelated, combining two methods leads to a better performance for source localization. This paper focus on the pseudo linear estimator (PLE) with a closed-form and low complexity solution. One of the main limitations in this estimator is the bias created from the correlation between system matrix and error vector, which is not vanished by increasing the number of measurements. To overcome this problem first, we present a bias compensated PLE using the closed instrumental variable (IV). Then, for improving the localization performance a weighting IV estimator (WIV) is presented. Finally, for achieving the Cramer–Rao lower bound (CRLB) an improved WIV (IWIV) estimator is used based on the known relation between the estimated parameters of WIV estimator. The proposed IWIV estimator is proved to be asymptotically efficient (i.e., obtaining zero bias and the Cramer–Rao lower bound). Numerical simulations also verify the theoretical development and show source localization using hybrid information RSSD/AOA has a superior performance than RSSD and AOA solely.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang, Z., Luo, J. A., & Zhang, X. P. (2012). A novel location-penalized maximum likelihood estimator for bearing-only target localization. IEEE Transactions on Signal Processing, 60, 6166–6181.MathSciNetCrossRef Wang, Z., Luo, J. A., & Zhang, X. P. (2012). A novel location-penalized maximum likelihood estimator for bearing-only target localization. IEEE Transactions on Signal Processing, 60, 6166–6181.MathSciNetCrossRef
2.
Zurück zum Zitat Li, Z., Chung, P. J., & Mulgrew, B. (2017). Distributed target localization using quantized received signal strength. Signal Processing, 134, 214–223.CrossRef Li, Z., Chung, P. J., & Mulgrew, B. (2017). Distributed target localization using quantized received signal strength. Signal Processing, 134, 214–223.CrossRef
3.
Zurück zum Zitat Gazestani, A. H., Shahbazian, R., & Gorashi, S. A. (2017). Decentralized consensus based target localization in wireless sensor networks. Wireless Personal Communications, 97, 3587–3599.CrossRef Gazestani, A. H., Shahbazian, R., & Gorashi, S. A. (2017). Decentralized consensus based target localization in wireless sensor networks. Wireless Personal Communications, 97, 3587–3599.CrossRef
4.
Zurück zum Zitat Thompson, A. R., Moran, J. M., & Swenson, G. W. (2008). Interferometry and synthesis in radio astronomy. New York: Wiley. Thompson, A. R., Moran, J. M., & Swenson, G. W. (2008). Interferometry and synthesis in radio astronomy. New York: Wiley.
5.
Zurück zum Zitat Levorato, R., & Pagello, E. (2015, April). DOA acoustic source localization in mobile robot sensor networks. In 2015 IEEE International conference on autonomous robot systems and competitions (pp. 71–76). Levorato, R., & Pagello, E. (2015, April). DOA acoustic source localization in mobile robot sensor networks. In 2015 IEEE International conference on autonomous robot systems and competitions (pp. 71–76).
6.
Zurück zum Zitat Meng, W., Xiao, W., & Xie, L. (2011). An efficient EM algorithm for energy-based multi source localization in wireless sensor networks. IEEE Transactions on Instrumentation and Measurement, 60, 1017–1027.CrossRef Meng, W., Xiao, W., & Xie, L. (2011). An efficient EM algorithm for energy-based multi source localization in wireless sensor networks. IEEE Transactions on Instrumentation and Measurement, 60, 1017–1027.CrossRef
7.
Zurück zum Zitat Wen, C. Y., & Chan, F. K. (2010). Adaptive AOA-aided TOA self-positioning for mobile wireless sensor networks. Sensors, 10, 9742–9770.CrossRef Wen, C. Y., & Chan, F. K. (2010). Adaptive AOA-aided TOA self-positioning for mobile wireless sensor networks. Sensors, 10, 9742–9770.CrossRef
8.
Zurück zum Zitat So, H. C., & Shiu, E. M. K. (2003). Performance of TOA-AOA hybrid mobile location. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 86(8), 2136–2138. So, H. C., & Shiu, E. M. K. (2003). Performance of TOA-AOA hybrid mobile location. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 86(8), 2136–2138.
9.
Zurück zum Zitat Yao, Z., Huang, J., Wang, S., & Ruby, R. (2017). Efficient local optimisation-based approach for non-convex and non-smooth source localisation problems. IET Radar, Sonar, Navigation, 11, 1051–1054.CrossRef Yao, Z., Huang, J., Wang, S., & Ruby, R. (2017). Efficient local optimisation-based approach for non-convex and non-smooth source localisation problems. IET Radar, Sonar, Navigation, 11, 1051–1054.CrossRef
10.
Zurück zum Zitat Vaghefi, R. M., & Buehrer, M. (2015). Cooperative localization in NLOS environments using semidefinite programming. IEEE Communications Letters, 19, 1382–1385.CrossRef Vaghefi, R. M., & Buehrer, M. (2015). Cooperative localization in NLOS environments using semidefinite programming. IEEE Communications Letters, 19, 1382–1385.CrossRef
11.
Zurück zum Zitat Lin, L., So, H. C., & Chan, Y. T. (2013). Accurate and simple source localization using differential received signal strength. Digital Signal Processing, 23, 736–743.MathSciNetCrossRef Lin, L., So, H. C., & Chan, Y. T. (2013). Accurate and simple source localization using differential received signal strength. Digital Signal Processing, 23, 736–743.MathSciNetCrossRef
12.
Zurück zum Zitat Cheung, K. W., So, H. C., Ma, W. K., & Chan, Y. T. (2004). Least squares algorithms for time-of-arrival-based mobile location. IEEE Transactions on Signal Processing, 52, 1121–1128.MathSciNetCrossRef Cheung, K. W., So, H. C., Ma, W. K., & Chan, Y. T. (2004). Least squares algorithms for time-of-arrival-based mobile location. IEEE Transactions on Signal Processing, 52, 1121–1128.MathSciNetCrossRef
13.
Zurück zum Zitat Ho, K. C., & Sun, M. (2008). Passive source localization using time differences of arrival and gain ratios of arrival. IEEE Transactions on Signal Processing, 56, 464–477.MathSciNetCrossRef Ho, K. C., & Sun, M. (2008). Passive source localization using time differences of arrival and gain ratios of arrival. IEEE Transactions on Signal Processing, 56, 464–477.MathSciNetCrossRef
14.
Zurück zum Zitat Yin, J., Wan, Q., Yang, S., & Ho, K. C. (2016). A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Processing Letters, 23, 144–148.CrossRef Yin, J., Wan, Q., Yang, S., & Ho, K. C. (2016). A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Processing Letters, 23, 144–148.CrossRef
15.
Zurück zum Zitat Klukas, R., & Lachapalle, G. (2003). An enhanced two-step least squared approach for TDOA/AOA wireless location. In IEEE international conference on communications, ICC, 03(2), (pp. 987–991). Klukas, R., & Lachapalle, G. (2003). An enhanced two-step least squared approach for TDOA/AOA wireless location. In IEEE international conference on communications, ICC, 03(2), (pp. 987–991).
16.
Zurück zum Zitat Deng, P., & Fan, P.Z. (2000). An AOA assisted TOA positioning systeem. In Proceedings of international conference on communication technology, China, (pp. 1501–1504). Deng, P., & Fan, P.Z. (2000). An AOA assisted TOA positioning systeem. In Proceedings of international conference on communication technology, China, (pp. 1501–1504).
17.
Zurück zum Zitat Yang, T., & Wu, X. (2015). Accurate location estimation of sensor node using received signal strength measurements. AEU-International Journal of Electronics and Communications, 69, 765–770.CrossRef Yang, T., & Wu, X. (2015). Accurate location estimation of sensor node using received signal strength measurements. AEU-International Journal of Electronics and Communications, 69, 765–770.CrossRef
18.
Zurück zum Zitat Zhao, B., Guan, X., Xie, L., & Xiao, W. (2011). Sensor selection for received signal strength-based source localization in wireless sensor networks. Journal of Control Theory and Applications, 9, 51–57.MathSciNetCrossRef Zhao, B., Guan, X., Xie, L., & Xiao, W. (2011). Sensor selection for received signal strength-based source localization in wireless sensor networks. Journal of Control Theory and Applications, 9, 51–57.MathSciNetCrossRef
19.
Zurück zum Zitat Kalpana, R., & Baskaran, M. (2017). TAR: TOAAOA based random transmission directed localization. Wireless Personal Communications, 90(4), 889–902. Kalpana, R., & Baskaran, M. (2017). TAR: TOAAOA based random transmission directed localization. Wireless Personal Communications, 90(4), 889–902.
20.
Zurück zum Zitat Li, W., Tang, Q., Huang, C., Ren, C., & Li, Y. (2017). A new close form location algorithm with AOA and TDOA for mobile user. Wireless Personal Communications, 97, 3061–3080.CrossRef Li, W., Tang, Q., Huang, C., Ren, C., & Li, Y. (2017). A new close form location algorithm with AOA and TDOA for mobile user. Wireless Personal Communications, 97, 3061–3080.CrossRef
21.
Zurück zum Zitat Wang, J., Chen, J., & Cabric, D. (2013). Cramer–Rao bounds for joint RSS / DOA-based cognitive radio networks. IEEE Transactions on Wireless Communications, 12, 1363–1375.CrossRef Wang, J., Chen, J., & Cabric, D. (2013). Cramer–Rao bounds for joint RSS / DOA-based cognitive radio networks. IEEE Transactions on Wireless Communications, 12, 1363–1375.CrossRef
22.
Zurück zum Zitat Patwari, N. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51, 2137–2148.CrossRef Patwari, N. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51, 2137–2148.CrossRef
23.
Zurück zum Zitat Liu, B. C., Lin, K. H., & Wu, J. C. (2006). Analysis of hyperbolic and circular positioning algorithms using stationary signal-strength-difference measurements in wireless communications. IEEE Transactions on Vehicular Technology, 55, 499–509.CrossRef Liu, B. C., Lin, K. H., & Wu, J. C. (2006). Analysis of hyperbolic and circular positioning algorithms using stationary signal-strength-difference measurements in wireless communications. IEEE Transactions on Vehicular Technology, 55, 499–509.CrossRef
24.
Zurück zum Zitat Wang, S., & Inkol, R. (2011). A near-optimal least squares solution to received signal strength difference based geolocation. In ICASSP. Wang, S., & Inkol, R. (2011). A near-optimal least squares solution to received signal strength difference based geolocation. In ICASSP.
25.
Zurück zum Zitat Liu, B. C., & Lin, K. H. (2008). Distance difference error correction by least square for stationary signal-strength-difference-based hyperbolic location in cellular communications. IEEE Transactions on Vehicular Technology, 57, 227–238.CrossRef Liu, B. C., & Lin, K. H. (2008). Distance difference error correction by least square for stationary signal-strength-difference-based hyperbolic location in cellular communications. IEEE Transactions on Vehicular Technology, 57, 227–238.CrossRef
26.
Zurück zum Zitat Wang, G., Chen, H., Li, Y., & Jin, M. (2012). On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wireless Communications Letters, 1, 536–539.CrossRef Wang, G., Chen, H., Li, Y., & Jin, M. (2012). On received-signal-strength based localization with unknown transmit power and path loss exponent. IEEE Wireless Communications Letters, 1, 536–539.CrossRef
27.
Zurück zum Zitat Lohrasbipeyadeh, H., Gulliver, T. A., & Amindavar, H. (2014). A minimax SDP method for energy based source localization with unknown transmit power. IEEE Wireless Communications Letters, 3, 433–436.CrossRef Lohrasbipeyadeh, H., Gulliver, T. A., & Amindavar, H. (2014). A minimax SDP method for energy based source localization with unknown transmit power. IEEE Wireless Communications Letters, 3, 433–436.CrossRef
28.
Zurück zum Zitat Shao, H., Zhang, X., & Wang, Z. (2014). Efficient closed-form algorithms for AOA Based self-localization of sensor nodes using auxiliary variables. IEEE Transactions on Signal Processing, 62, 2580–2594.MathSciNetCrossRef Shao, H., Zhang, X., & Wang, Z. (2014). Efficient closed-form algorithms for AOA Based self-localization of sensor nodes using auxiliary variables. IEEE Transactions on Signal Processing, 62, 2580–2594.MathSciNetCrossRef
29.
Zurück zum Zitat Zhou, Q., & Duan, Z. (2014). Weighted intersections of bearing lines for AOA based localization. In 17th International conference on information fusion (FUSION). Zhou, Q., & Duan, Z. (2014). Weighted intersections of bearing lines for AOA based localization. In 17th International conference on information fusion (FUSION).
30.
Zurück zum Zitat Gavish, M., & Weiss, A. J. (1992). Performance analysis of bearing-only target location algorithms. IEEE Transactions on Aerospace and Electronic Systems, 28, 817–828.CrossRef Gavish, M., & Weiss, A. J. (1992). Performance analysis of bearing-only target location algorithms. IEEE Transactions on Aerospace and Electronic Systems, 28, 817–828.CrossRef
31.
Zurück zum Zitat Ho, K. C. (2012). Bias reduction for an explicit solution of source localization using TDOA. IEEE Transactions on Signal Processing, 60, 2101–2114.MathSciNetCrossRef Ho, K. C. (2012). Bias reduction for an explicit solution of source localization using TDOA. IEEE Transactions on Signal Processing, 60, 2101–2114.MathSciNetCrossRef
32.
Zurück zum Zitat Nardone, S., & Lindgren, A. (1984). Fundamental properties and performance of conventional bearings-only target motion analysis. IEEE Transactions on Automatic Control, 29, 775–787.CrossRef Nardone, S., & Lindgren, A. (1984). Fundamental properties and performance of conventional bearings-only target motion analysis. IEEE Transactions on Automatic Control, 29, 775–787.CrossRef
33.
Zurück zum Zitat Chan, Y., & Rudnicki, S. (1992). Bearings-only and Doppler-bearing tracking using instrumental variables. IEEE Transactions on Aerospace and Electronic Systems, 28, 1076–1083.CrossRef Chan, Y., & Rudnicki, S. (1992). Bearings-only and Doppler-bearing tracking using instrumental variables. IEEE Transactions on Aerospace and Electronic Systems, 28, 1076–1083.CrossRef
34.
Zurück zum Zitat Mendel, J. M. (1995). Lessons in estimation theory for signal processing, communications, and control. Upper Saddle River: Prentice-Hall.MATH Mendel, J. M. (1995). Lessons in estimation theory for signal processing, communications, and control. Upper Saddle River: Prentice-Hall.MATH
35.
Zurück zum Zitat Chan, Y. T., & Ho, K. C. (1994). A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing, 42, 1905–1915.CrossRef Chan, Y. T., & Ho, K. C. (1994). A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing, 42, 1905–1915.CrossRef
36.
Zurück zum Zitat Cheung, K. W., & So, H. C. (2005). A multidimensional scaling framework for mobile location using time-of-arrival measurements. IEEE Transactions on Signal Processing, 53, 460–470.MathSciNetCrossRef Cheung, K. W., & So, H. C. (2005). A multidimensional scaling framework for mobile location using time-of-arrival measurements. IEEE Transactions on Signal Processing, 53, 460–470.MathSciNetCrossRef
Metadaten
Titel
Joint RSSD/AOA Source Localization: Bias Analysis and Asymptotically Efficient Estimator
verfasst von
Ali Heydari
Masoudreza Aghabozorgi
Publikationsdatum
05.06.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07495-9

Weitere Artikel der Ausgabe 3/2020

Wireless Personal Communications 3/2020 Zur Ausgabe

Neuer Inhalt