Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

20.06.2018 | Original Article | Ausgabe 7/2019

International Journal of Machine Learning and Cybernetics 7/2019

Joint sparse representation and locality preserving projection for feature extraction

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 7/2019
Autoren:
Wei Zhang, Peipei Kang, Xiaozhao Fang, Luyao Teng, Na Han
Wichtige Hinweise
This work is supported in part by the National Natural Science Foundation of China under Grants 61702110, 61603100 and 61772141, by the Guangdong Provincial Natural Science Foundation under Grant 17ZK0422, by Guangdong Higher Education letter 2015[133], 2014[97], and by the Guangzhou Science and Technology Project under Grants 201508010067, 201604020145, 2016201604030034, 201604046017 and 201804010347.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Traditional graph-based feature extraction methods use two separated procedures, i.e., graph learning and projection learning to perform feature extraction. They make the feature extraction result highly dependent on the quality of the initial fixed graph, while the graph may not be the optimal one for feature extraction. In this paper, we propose a novel unsupervised feature extraction method, i.e., joint sparse representation and locality preserving projection (JSRLPP), in which the graph construction and feature extraction are simultaneously carried out. Specifically, we adaptively learn the similarity matrix by sparse representation, and at the same time, learn the projection matrix by preserving local structure. Compared with traditional feature extraction methods, our approach unifies graph learning and projection learning to a common framework, thus learns a more suitable graph for feature extraction. Experiments on several public image data sets demonstrate the effectiveness of our proposed algorithm.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 7/2019

International Journal of Machine Learning and Cybernetics 7/2019 Zur Ausgabe