Skip to main content


Journal of Intelligent Information Systems

Integrating Artificial Intelligence and Database Technologies

Journal of Intelligent Information Systems OnlineFirst articles


Collaborative filtering recommendation based on trust and emotion

With the development of personalized recommendations, information overload has been alleviated. However, the sparsity of the user-item rating matrix and the weak transitivity of trust still affect the recommendation accuracy in complex social …


ISoTrustSeq: a social recommender system based on implicit interest, trust and sequential behaviors of users using matrix factorization

Recommender systems try to propose a list of main interests of an on line social network user based on his predicted rating values. In the recent years, several methods are proposed such as Interest Social Recommendation method (ISoRec), and …


Experimental validation for N-ary error correcting output codes for ensemble learning of deep neural networks

N-ary error correcting output codes (ECOC) decompose a multi-class problem into simpler multi-class problems by splitting the classes into N subsets (meta-classes) to form an ensemble of N-class classifiers and combine them to make predictions. It …


Robust learning in expert networks: a comparative analysis

Human experts as well as autonomous agents in a referral network must decide whether to accept a task or refer to a more appropriate expert, and if so to whom. In order for the referral network to improve over time, the experts must learn to …


Reliable TF-based recommender system for capturing complex correlations among contexts

Context-aware recommender systems (CARS) exploit multiple contexts to improve user experience in embracing new information and services. Tensor factorization (TF), a type of latent factor model, has achieved remarkable performance in CARS. TF …

Aktuelle Ausgaben

Über diese Zeitschrift

The Journal of Intelligent Information Systems: Integrating Artificial Intelligence and Database Technologies (JIIS) focuses on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.

JIIS provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. Articles published in JIIS include: research papers, invited papers, meeting, workshop and conference announcements and reports, survey and tutorial articles, and book reviews.

Topics include foundations and principles of data, information, and knowledge models; methodologies for IIS analysis, design, implementation, validation, maintenance and evolution, and more.

Weitere Informationen

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.



Product Lifecycle Management im Konzernumfeld – Herausforderungen, Lösungsansätze und Handlungsempfehlungen

Für produzierende Unternehmen hat sich Product Lifecycle Management in den letzten Jahrzehnten in wachsendem Maße zu einem strategisch wichtigen Ansatz entwickelt. Forciert durch steigende Effektivitäts- und Effizienzanforderungen stellen viele Unternehmen ihre Product Lifecycle Management-Prozesse und -Informationssysteme auf den Prüfstand. Der vorliegende Beitrag beschreibt entlang eines etablierten Analyseframeworks Herausforderungen und Lösungsansätze im Product Lifecycle Management im Konzernumfeld.
Jetzt gratis downloaden!