Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Automatic Documentation and Mathematical Linguistics 2/2022

01.04.2022 | INTELLIGENT SYSTEMS

JSM Reasoning and Knowledge Discovery: Ampliative Reasoning, Causality Recognition, and Three Kinds of Completeness#

verfasst von: V. K. Finn

Erschienen in: Automatic Documentation and Mathematical Linguistics | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Inductive inferences and inferences, by analogy with JSM reasoning, are characterized as ampliative inferences generating new knowledge. New predicates for inductive inference rules and their ordering are considered. The case of a single-element effect for the predicate “X has effect Y” is also investigated.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The fifth level of acceptance of the generated hypotheses is an M-sequence of modal operators of rank r, where r > 1, representing empirical regularities that are obtained by applying JSM reasoning r-fold to sequences of extensible fact bases [1, p. 22].
 
2
Thus, the empirical patterns are a formalization of the idea of the knowledge-discovery process formulated in [2].
 
3
To understand the definition of knowledge in a computer system, one should become familiarized with its definition in [5, p. 31].
 
4
FB(0), FB(1), …, FB(s) is the sequence of expandable fact bases: FB(0) ⊂ FB(1) ⊂ … ⊂ FB(s).
 
5
Note that the degree of plausibility of a fact is 0 and that of a hypothesis is greater than 0, since it represents the number of steps of a plausible inference.
 
6
Since the truth values of JL formulas have the form \(\bar {v} = \left\langle {v,n} \right\rangle \), where \(v \in \left\{ {1, - 1,0,\tau } \right\}\), and \(n \in N\), the logic is infinite-valued.
 
7
In the case |Y| =1, \({{J}_{{\left\langle {1,1} \right\rangle }}}\left( {{{V}_{i}} \Rightarrow _{2}^{{(P)}}{{Y}_{i}}} \right)\) and \({{J}_{{\left\langle {1,0} \right\rangle }}}\left( {X \Rightarrow _{1}^{{(P)}}Y} \right)\) are used.
 
8
That is, similarities for (+)-examples and (–)-examples.
 
9
For convenience of notation, we will represent finite sets {A, B, ..., P} as words AB...P; for example, we will represent {A, B, C} as АВС.
 
10
Therefore, the relation \( \Rightarrow _{2}^{*}\) is not functional.
 
11
The premises of p.i.r.-1 are the corresponding elements of the diagram for \({{\Re }_{1}}\), and the premises of p.i.r.-2 are the corresponding elements of the diagram for \({{\bar {\Re }}_{1}}\).
 
12
In IS–JSM intelligent systems that implement the ARS JSM method [4, 19], D1,0(p) form a fact base.
 
13
If CCA(σ) are true, then the admissible JSM reasoning is strong [5].
 
14
This condition can be generalized to all Strx, y from [7]. The same holds true for the sufficient condition (**).
 
15
Obviously, for strong admissible JSM reasoning ρσ(s) = 1, where σ = +,–.
 
16
In Section 4 of this paper, possible strengthenings will be considered.
 
17
Since \(X{{ \Rightarrow }_{1}}Y\) and \(V{{ \Rightarrow }_{2}}Y\) are defined with respect to relational systems and their corresponding D0,1(P), these primitive predicates depend on the parameter Р.
 
18
In [8], J.S. Mill used the term agreement–difference. In the ARS JSM, the term similarity–difference is preferred.
 
19
The elements of M have a superscript σ, where σ = +, –, which, for the sake of notation, will sometimes be omitted.
 
20
Definitions of operations and are contained in the Appendix.
 
21
φ is obtained in the Appendix.
 
22
Indices (P) and (x, y) will sometimes be omitted for convenience of notation.
 
23
In the Appendix, the relational system \({{\bar {\Re }}_{f}}\) is considered such that the predicates \(M_{{{{a}_{{12}}}fg,0}}^{\sigma }\left( {V,Y} \right)\) are satisfiable in it.
 
24
Part II of this article will deal with the cases when |Y| > 1 and there is ¬α.
 
25
The content of this section assumes familiarity with papers [1, 5].
 
26
They are empirical nomological statements [1, 26].
 
27
This means strengthened realization of the scientific research demarcation criterion [27].
 
28
This definition is formulated for computer systems that implement the ARS JSM method.
 
29
We intend to consider the Boolean function F2() for the case |Y | > 1 in the second part of this article.
 
30
The sets \(\overline {Str} \times A_{E}^{\sigma }\) are partially ordered with the largest and smallest element for σ = +, –, respectively.
 
31
Recall that \(A_{\chi }^{\sigma }\) is an element of the intension of the concept of empirical regularity and \(A_{\chi }^{\sigma }(C{\kern 1pt} ',\,\,Q)\) is an extension element of this concept.
 
32
Situational JSM reasoning is obviously in demand for the analysis of sociological data. Note also that there are cases when V = Ø or S = Ø.
 
33
We intend to consider this problem in the second part of this article.
 
Literatur
2.
Zurück zum Zitat Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., Advances in Knowledge Discovery and Data Mining, Cambridge: The AAAI Press, 1996. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., Advances in Knowledge Discovery and Data Mining, Cambridge: The AAAI Press, 1996.
3.
Zurück zum Zitat Finn, V.K., On the intellectual data analysis, Novosti Iskusstv. Intell., 2004, no. 3, pp. 3–17. Finn, V.K., On the intellectual data analysis, Novosti Iskusstv. Intell., 2004, no. 3, pp. 3–17.
6.
Zurück zum Zitat Rosser, J.B. and Turquette, A.R., Many-Valued Logics, Amsterdam: North-Holland, 1958. MATH Rosser, J.B. and Turquette, A.R., Many-Valued Logics, Amsterdam: North-Holland, 1958. MATH
8.
Zurück zum Zitat Mill, J.S., A System of Logic Ratiocinative and Inductive, Being a Connected View of Principles of Evidence and the Methods of Scientific Investigation, London: Parker, Son and Bowin, 1843. CrossRef Mill, J.S., A System of Logic Ratiocinative and Inductive, Being a Connected View of Principles of Evidence and the Methods of Scientific Investigation, London: Parker, Son and Bowin, 1843. CrossRef
9.
Zurück zum Zitat Fann, K.T., Peirce’s Theory of Abduction, The Hague: Martinus Nijhoff Publishers, 1970. CrossRef Fann, K.T., Peirce’s Theory of Abduction, The Hague: Martinus Nijhoff Publishers, 1970. CrossRef
10.
Zurück zum Zitat Skvortsov, D.P., On some ways of constructing logical languages with quantors by tuples, Semiotika Inf., 1983, no. 20, pp. 102–126. Skvortsov, D.P., On some ways of constructing logical languages with quantors by tuples, Semiotika Inf., 1983, no. 20, pp. 102–126.
11.
Zurück zum Zitat Handbook of Mathematical Logic, Barvais, D., Ed., Amsterdam: North-Holland, 1977. Handbook of Mathematical Logic, Barvais, D., Ed., Amsterdam: North-Holland, 1977.
13.
Zurück zum Zitat Finn, V.K., A form of argumentation logic, Autom. Docum. Math. Linguist., 1996, vol. 3, no. 3, pp. 3–27. Finn, V.K., A form of argumentation logic, Autom. Docum. Math. Linguist., 1996, vol. 3, no. 3, pp. 3–27.
15.
Zurück zum Zitat Reichenbach, H., Elements of Symbolic Logic, New York: Macmillan, 1947. MATH Reichenbach, H., Elements of Symbolic Logic, New York: Macmillan, 1947. MATH
16.
Zurück zum Zitat Mal’tsev, A.I., Algebraicheskie sistemy (Algebraic Systems), Moscow: Nauka, 1970. Mal’tsev, A.I., Algebraicheskie sistemy (Algebraic Systems), Moscow: Nauka, 1970.
17.
Zurück zum Zitat Weingartner, P., Basic Question of Truth, Dordrecht: Kluver Academic Publishers, 2000. CrossRef Weingartner, P., Basic Question of Truth, Dordrecht: Kluver Academic Publishers, 2000. CrossRef
18.
Zurück zum Zitat Rescher, N., The Coherence Theory of Truth, Oxford: The Clarendon Press, 1973. Rescher, N., The Coherence Theory of Truth, Oxford: The Clarendon Press, 1973.
19.
Zurück zum Zitat Finn, V.K., Iskusstvennyi intellekt (metodologiya, primeneniya, filosofiya) (Artificial Intelligence: Methodology, Applications, and Philosophy), Moscow: LENAND, 2021, 2nd ed. Finn, V.K., Iskusstvennyi intellekt (metodologiya, primeneniya, filosofiya) (Artificial Intelligence: Methodology, Applications, and Philosophy), Moscow: LENAND, 2021, 2nd ed.
20.
Zurück zum Zitat Grätzer, G., General Lattice Theory, Berlin: Academic-Verlag, 1978. CrossRef Grätzer, G., General Lattice Theory, Berlin: Academic-Verlag, 1978. CrossRef
21.
22.
Zurück zum Zitat DSM-metod avtomaticheskogo porozhdeniya gipotez: logicheskie i epistemologicheskie osnovaniya (JSM Method of Automatic Hypotheses Generation: Logical and Epistemological Foundations), Moscow: Librokom, 2009. DSM-metod avtomaticheskogo porozhdeniya gipotez: logicheskie i epistemologicheskie osnovaniya (JSM Method of Automatic Hypotheses Generation: Logical and Epistemological Foundations), Moscow: Librokom, 2009.
23.
Zurück zum Zitat Frege, G., On sense and meaning, Logika i logicheskaya semantika (Logic and Logical Semantic), Moscow: Aspekt Press, 2000. Frege, G., On sense and meaning, Logika i logicheskaya semantika (Logic and Logical Semantic), Moscow: Aspekt Press, 2000.
25.
Zurück zum Zitat Gillies, D., Artificial Intelligence and Scientific Method, New York: Oxford Univ. Press, 1996. MATH Gillies, D., Artificial Intelligence and Scientific Method, New York: Oxford Univ. Press, 1996. MATH
26.
Zurück zum Zitat Reichenbach, H., Nomological Statement and Admissible Operations, Amsterdam: North-Holland, 1954. MATH Reichenbach, H., Nomological Statement and Admissible Operations, Amsterdam: North-Holland, 1954. MATH
27.
Zurück zum Zitat Popper, K.R., Objective Knowledge: An Evolutionary Approach, Oxford: Clarendon Press, 1979. Popper, K.R., Objective Knowledge: An Evolutionary Approach, Oxford: Clarendon Press, 1979.
28.
Zurück zum Zitat McCarthy, D. and Hayes, P.J., Some philosophical problems from the standpoint of artificial intelligence, Mach. Intell., 1979, no. 4, pp. 463–502. McCarthy, D. and Hayes, P.J., Some philosophical problems from the standpoint of artificial intelligence, Mach. Intell., 1979, no. 4, pp. 463–502.
30.
Zurück zum Zitat Kant, I., Kritik der reinen Vernunft, Riga: Johann Friedrich Hartknoch, 1781. Kant, I., Kritik der reinen Vernunft, Riga: Johann Friedrich Hartknoch, 1781.
33.
Zurück zum Zitat Finn, V.K. and Mikheyenkova, M.A., Situation extension of the JSM automatic hypotheses generation method, Autom. Docum. Math. Linguist., 2000, vol. 34, no. 6, pp. 11–26. Finn, V.K. and Mikheyenkova, M.A., Situation extension of the JSM automatic hypotheses generation method, Autom. Docum. Math. Linguist., 2000, vol. 34, no. 6, pp. 11–26.
35.
Zurück zum Zitat Anshakov, O.M., Skvortsov, D.P., and Finn, V.K., On deductive imitation of some variants of the JSM method of automatic hypotheses generation, Semiotika Inf., 1988, no. 33, pp. 164–233. Anshakov, O.M., Skvortsov, D.P., and Finn, V.K., On deductive imitation of some variants of the JSM method of automatic hypotheses generation, Semiotika Inf., 1988, no. 33, pp. 164–233.
36.
Zurück zum Zitat Finn, V.K., Foreword to the second edition, Iskusstvennyi intellekt (Artificial Intelligence), Moscow; LENAND, 2021, 2nd ed., pp. 14–31. Finn, V.K., Foreword to the second edition, Iskusstvennyi intellekt (Artificial Intelligence), Moscow; LENAND, 2021, 2nd ed., pp. 14–31.
Metadaten
Titel
JSM Reasoning and Knowledge Discovery: Ampliative Reasoning, Causality Recognition, and Three Kinds of Completeness#
verfasst von
V. K. Finn
Publikationsdatum
01.04.2022
Verlag
Pleiades Publishing
Erschienen in
Automatic Documentation and Mathematical Linguistics / Ausgabe 2/2022
Print ISSN: 0005-1055
Elektronische ISSN: 1934-8371
DOI
https://doi.org/10.3103/S0005105522020066

Weitere Artikel der Ausgabe 2/2022

Automatic Documentation and Mathematical Linguistics 2/2022 Zur Ausgabe

Premium Partner