Skip to main content
Erschienen in:

02.11.2022 | Original Research

Judicial knowledge-enhanced magnitude-aware reasoning for numerical legal judgment prediction

verfasst von: Sheng Bi, Zhiyao Zhou, Lu Pan, Guilin Qi

Erschienen in: Artificial Intelligence and Law | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Legal Judgment Prediction (LJP) is an essential component of legal assistant systems, which aims to automatically predict judgment results from a given criminal fact description. As a vital subtask of LJP, researchers have paid little attention to the numerical LJP, i.e., the prediction of imprisonment and penalty. Existing methods ignore numerical information in the criminal facts, making their performances far from satisfactory. For instance, the amount of theft varies, as do the prison terms and penalties. The major challenge is how the model can obtain the ability of numerical comparison and magnitude perception, e.g., 400 < 500 < 800, 500 is closer to 400 than to 800. To this end, we propose a judicial knowledge-enhanced magnitude-aware reasoning architecture, called NumLJP, for the numerical LJP task. Specifically, we first implement a contrastive learning-based judicial knowledge selector to distinguish confusing criminal cases efficiently. Unlike previous approaches that employ the law article as external knowledge, judicial knowledge is a quantitative guideline in real scenarios. It contains many numerals (called anchors) that can construct a reference frame. Then we design a masked numeral prediction task to help the model remember these anchors to acquire legal numerical commonsense from the selected judicial knowledge. We construct a scale-based numerical graph using the anchors and numerals in facts to perform magnitude-aware numerical reasoning. Finally, the representations of fact description, judicial knowledge, and numerals are fused to make decisions. We conduct extensive experiments on three real-world datasets and select several competitive baselines. The results demonstrate that the macro-F1 of NumLJP improves by at least 9.53% and 11.57% on the prediction of penalty and imprisonment, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
These numerals may change as the legal system is reformed, but they are fixed over a considerable period. Therefore, we assume that these numerals are fixed.
 
2
Legal numerical commonsense indicates the judge’s knowledge of the numerical features in the fact description, such as the amount of property stolen, the number of drugs sold, etc. Each of these numerals has its own range and probability distribution.
 
3
Here the numeral vocabulary refers to all numerical anchors that appear in a same judicial knowledge.
 
6
Existing Chinese LJP datasets are usually divided in this manner.
 
9
PLMs utilize called WordPiece tokenizer to split words either into the full forms or into word pieces Devlin et al. (2019).
 
10
the anchors of Theft are 1,000, 3,000, 30,000, 100,000, 300,000, 500,000.
 
12
Among all hyperparameters, the learning rate lr, gradient clipping clipping, the weight of contrastive learning loss \(\lambda \), and the temperature \(\tau \) are set empirically following previous works, which are not repeated in this paper. \(N^t\) is the multiplier assigned for interval division, and we detail its setting principle in Section 4.3.1.
 
13
The comparison chain is ordered numerals in a numerical graph.
 
Literatur
Zurück zum Zitat Amini A, Gabriel S, Lin S, Koncel-Kedziorski R, Choi Y, Hajishirzi H (2019) Mathqa: Towards interpretable math word problem solving with operation-based formalisms. In: NAACL, pp. 2357–2367 Amini A, Gabriel S, Lin S, Koncel-Kedziorski R, Choi Y, Hajishirzi H (2019) Mathqa: Towards interpretable math word problem solving with operation-based formalisms. In: NAACL, pp. 2357–2367
Zurück zum Zitat Bakalov A, Fuxman A, Talukdar PP, Chakrabarti S (2011) Scad: Collective discovery of attribute values. In: WWW, pp. 447–456 Bakalov A, Fuxman A, Talukdar PP, Chakrabarti S (2011) Scad: Collective discovery of attribute values. In: WWW, pp. 447–456
Zurück zum Zitat Baly R, Karadzhov G, Saleh A, Glass JR, Nakov P (2019) Multi-task ordinal regression for jointly predicting the trustworthiness and the leading political ideology of news media. In: NAACL-HLT, pp. 2109–2116 Baly R, Karadzhov G, Saleh A, Glass JR, Nakov P (2019) Multi-task ordinal regression for jointly predicting the trustworthiness and the leading political ideology of news media. In: NAACL-HLT, pp. 2109–2116
Zurück zum Zitat Banerjee S, Chakrabarti S, Ramakrishnan G (2009) Learning to rank for quantity consensus queries. In: SIGIR, pp. 243–250 Banerjee S, Chakrabarti S, Ramakrishnan G (2009) Learning to rank for quantity consensus queries. In: SIGIR, pp. 243–250
Zurück zum Zitat Bi S, Huang Y, Cheng X, Wang M, Qi G (2019) Building chinese legal hybrid knowledge network. KSEM 11775:628–639 Bi S, Huang Y, Cheng X, Wang M, Qi G (2019) Building chinese legal hybrid knowledge network. KSEM 11775:628–639
Zurück zum Zitat Bi S, Cheng X, Chen J, Qi G, Wang M, Zhou Y, Wang L (2019) Dispute generation in law documents via joint context and topic attention. In: JIST, pp. 116–129 Bi S, Cheng X, Chen J, Qi G, Wang M, Zhou Y, Wang L (2019) Dispute generation in law documents via joint context and topic attention. In: JIST, pp. 116–129
Zurück zum Zitat Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A et al (2020) Language models are few-shot learners. Neural Inf Process Syst 33:1877–1901 Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A et al (2020) Language models are few-shot learners. Neural Inf Process Syst 33:1877–1901
Zurück zum Zitat Cao W, Mirjalili V, Raschka S (2020) Rank consistent ordinal regression for neural networks with application to age estimation. Pattern Recognit Lett 140:325–331CrossRef Cao W, Mirjalili V, Raschka S (2020) Rank consistent ordinal regression for neural networks with application to age estimation. Pattern Recognit Lett 140:325–331CrossRef
Zurück zum Zitat Chalkidis I, Androutsopoulos I, Aletras N (2019) Neural legal judgment prediction in English. In: ACL, pp. 4317–4323 Chalkidis I, Androutsopoulos I, Aletras N (2019) Neural legal judgment prediction in English. In: ACL, pp. 4317–4323
Zurück zum Zitat Chen H, Cai D, Dai W, Dai Z, Ding Y (2019) Charge-based prison term prediction with deep gating network. In: EMNLP, pp. 6361–6366 Chen H, Cai D, Dai W, Dai Z, Ding Y (2019) Charge-based prison term prediction with deep gating network. In: EMNLP, pp. 6361–6366
Zurück zum Zitat Chen K, Xu W, Cheng X, Xiaochuan Z, Zhang Y, Song L, Wang T, Qi Y, Chu W (2020) Question directed graph attention network for numerical reasoning over text. In: EMNLP, pp. 6759–6768 Chen K, Xu W, Cheng X, Xiaochuan Z, Zhang Y, Song L, Wang T, Qi Y, Chu W (2020) Question directed graph attention network for numerical reasoning over text. In: EMNLP, pp. 6759–6768
Zurück zum Zitat Cheng X, Bi S, Qi G, Wang Y (2020) Knowledge-aware method for confusing charge prediction. NLPCC 12430:667–679 Cheng X, Bi S, Qi G, Wang Y (2020) Knowledge-aware method for confusing charge prediction. NLPCC 12430:667–679
Zurück zum Zitat Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186
Zurück zum Zitat Diaz R, Marathe A (2019) Soft labels for ordinal regression. In: CVPR, pp. 4738–4747 Diaz R, Marathe A (2019) Soft labels for ordinal regression. In: CVPR, pp. 4738–4747
Zurück zum Zitat Dong Q, Niu S (2021) Legal judgment prediction via relational learning. In: SIGIR, pp. 983–992 Dong Q, Niu S (2021) Legal judgment prediction via relational learning. In: SIGIR, pp. 983–992
Zurück zum Zitat Dua D, Wang Y, Dasigi P, Stanovsky G, Singh S, Gardner M (2019) DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In: NAACL, pp. 2368–2378 Dua D, Wang Y, Dasigi P, Stanovsky G, Singh S, Gardner M (2019) DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In: NAACL, pp. 2368–2378
Zurück zum Zitat Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378CrossRef Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378CrossRef
Zurück zum Zitat Ge J, Huang Y, Shen X, Li C, Hu W (2021) Learning fine-grained fact-article correspondence in legal cases. TASLP 29:3694–3706 Ge J, Huang Y, Shen X, Li C, Hu W (2021) Learning fine-grained fact-article correspondence in legal cases. TASLP 29:3694–3706
Zurück zum Zitat George TE, Epstein L (1992) On the nature of supreme court decision making. APSR 86(2):323–337CrossRef George TE, Epstein L (1992) On the nature of supreme court decision making. APSR 86(2):323–337CrossRef
Zurück zum Zitat Geva M, Gupta A, Berant J (2020) Injecting numerical reasoning skills into language models. In: ACL, pp. 946–958 Geva M, Gupta A, Berant J (2020) Injecting numerical reasoning skills into language models. In: ACL, pp. 946–958
Zurück zum Zitat Gunel B, Du J, Conneau A, Stoyanov V (2021) Supervised contrastive learning for pre-trained language model fine-tuning. In: ICLR Gunel B, Du J, Conneau A, Stoyanov V (2021) Supervised contrastive learning for pre-trained language model fine-tuning. In: ICLR
Zurück zum Zitat Guo Z, Zhang Y, Teng Z, Lu W (2019) Densely connected graph convolutional networks for graph-to-sequence learning. TACL 7:297–312CrossRef Guo Z, Zhang Y, Teng Z, Lu W (2019) Densely connected graph convolutional networks for graph-to-sequence learning. TACL 7:297–312CrossRef
Zurück zum Zitat Gutmann M, Hyvärinen A (2010) Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. AISTATS 9:297–304 Gutmann M, Hyvärinen A (2010) Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. AISTATS 9:297–304
Zurück zum Zitat Hamilton WL, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: NeurIPS, pp. 1024–1034 Hamilton WL, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: NeurIPS, pp. 1024–1034
Zurück zum Zitat Hu Z, Li X, Tu C, Liu Z, Sun M (2018) Few-shot charge prediction with discriminative legal attributes. In: COLING, pp. 487–498 Hu Z, Li X, Tu C, Liu Z, Sun M (2018) Few-shot charge prediction with discriminative legal attributes. In: COLING, pp. 487–498
Zurück zum Zitat Huang D, Shi S, Lin C, Yin J, Ma W (2016) How well do computers solve math word problems? large-scale dataset construction and evaluation. In: ACL Huang D, Shi S, Lin C, Yin J, Ma W (2016) How well do computers solve math word problems? large-scale dataset construction and evaluation. In: ACL
Zurück zum Zitat Huber PJ (1992) Robust estimation of a location parameter. In: Breakthroughs in Statistics, pp. 492–518 Huber PJ (1992) Robust estimation of a location parameter. In: Breakthroughs in Statistics, pp. 492–518
Zurück zum Zitat Hénaff OJ (2020) Data-efficient image recognition with contrastive predictive coding. ICML 119:4182–4192 Hénaff OJ (2020) Data-efficient image recognition with contrastive predictive coding. ICML 119:4182–4192
Zurück zum Zitat Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, Makedon F (2021) A survey on contrastive self-supervised learning. Technologies 9(1):2CrossRef Jaiswal A, Babu AR, Zadeh MZ, Banerjee D, Makedon F (2021) A survey on contrastive self-supervised learning. Technologies 9(1):2CrossRef
Zurück zum Zitat Khosla P, Teterwak P, Wang C, Sarna A, Tian Y, Isola P, Maschinot A, Liu C, Krishnan D (2020) Supervised contrastive learning. Neural Inf Process Syst, 33 Khosla P, Teterwak P, Wang C, Sarna A, Tian Y, Isola P, Maschinot A, Liu C, Krishnan D (2020) Supervised contrastive learning. Neural Inf Process Syst, 33
Zurück zum Zitat Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: ICLR Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: ICLR
Zurück zum Zitat Kort F (1957) Predicting supreme court decisions mathematically: a quantitative analysis of the “right to counsel’’ cases. APSR 51(1):1–12CrossRef Kort F (1957) Predicting supreme court decisions mathematically: a quantitative analysis of the “right to counsel’’ cases. APSR 51(1):1–12CrossRef
Zurück zum Zitat Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Stoyanov V, Zettlemoyer L (2020) BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: ACL, pp. 7871–7880 Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Stoyanov V, Zettlemoyer L (2020) BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: ACL, pp. 7871–7880
Zurück zum Zitat Li S, Zhang H, Ye L, Su S, Guo X, Yu H, Fang B (2020) Prison term prediction on criminal case description with deep learning. Comput Mater Contin 62(3):1217–1231 Li S, Zhang H, Ye L, Su S, Guo X, Yu H, Fang B (2020) Prison term prediction on criminal case description with deep learning. Comput Mater Contin 62(3):1217–1231
Zurück zum Zitat Lin BY, Lee S, Khanna R, Ren X (2020) Birds have four legs?! numersense: Probing numerical commonsense knowledge of pre-trained language models. In: EMNLP, pp. 6862–6868 Lin BY, Lee S, Khanna R, Ren X (2020) Birds have four legs?! numersense: Probing numerical commonsense knowledge of pre-trained language models. In: EMNLP, pp. 6862–6868
Zurück zum Zitat Liu YH, Chen YL, Ho WL (2015) Predicting associated statutes for legal problems. IPM 51(1):194–211 Liu YH, Chen YL, Ho WL (2015) Predicting associated statutes for legal problems. IPM 51(1):194–211
Zurück zum Zitat Liu C-L, Chang C-T, Ho J-H (2004) Case instance generation and refinement for case-based criminal summary judgments in chinese. JISE, 783–800 Liu C-L, Chang C-T, Ho J-H (2004) Case instance generation and refinement for case-based criminal summary judgments in chinese. JISE, 783–800
Zurück zum Zitat Liu CL, Liao TM (2005) Classifying criminal charges in chinese for web-based legal services. In: APCCMI Liu CL, Liao TM (2005) Classifying criminal charges in chinese for web-based legal services. In: APCCMI
Zurück zum Zitat Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019) Roberta: A robustly optimized BERT pretraining approach. CoRR abs/1907.11692 Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019) Roberta: A robustly optimized BERT pretraining approach. CoRR abs/1907.11692
Zurück zum Zitat Luo B, Feng Y, Xu J, Zhang X, Zhao D (2017) Learning to predict charges for criminal cases with legal basis. In: EMNLP, pp. 2727–2736 Luo B, Feng Y, Xu J, Zhang X, Zhao D (2017) Learning to predict charges for criminal cases with legal basis. In: EMNLP, pp. 2727–2736
Zurück zum Zitat Nie Y, Williams A, Dinan E, Bansal M, Weston J, Kiela D (2020) Adversarial NLI: A new benchmark for natural language understanding. In: ACL, pp. 4885–4901 Nie Y, Williams A, Dinan E, Bansal M, Weston J, Kiela D (2020) Adversarial NLI: A new benchmark for natural language understanding. In: ACL, pp. 4885–4901
Zurück zum Zitat Niu Z, Zhou M, Wang L, Gao X, Hua G (2016) Ordinal regression with multiple output CNN for age estimation. In: CVPR, pp. 4920–4928 Niu Z, Zhou M, Wang L, Gao X, Hua G (2016) Ordinal regression with multiple output CNN for age estimation. In: CVPR, pp. 4920–4928
Zurück zum Zitat Parikh N, Boyd SP (2014) Proximal algorithms. Found. Trends Optim. 1(3):127–239 Parikh N, Boyd SP (2014) Proximal algorithms. Found. Trends Optim. 1(3):127–239
Zurück zum Zitat Patel A, Bhattamishra S, Goyal N (2021) Are NLP models really able to solve simple math word problems? In: NAACL, pp. 2080–2094 Patel A, Bhattamishra S, Goyal N (2021) Are NLP models really able to solve simple math word problems? In: NAACL, pp. 2080–2094
Zurück zum Zitat Qin J, Lin L, Liang X, Zhang R, Lin L (2020) Semantically-aligned universal tree-structured solver for math word problems. In: EMNLP, pp. 3780–3789 Qin J, Lin L, Liang X, Zhang R, Lin L (2020) Semantically-aligned universal tree-structured solver for math word problems. In: EMNLP, pp. 3780–3789
Zurück zum Zitat Ran Q, Lin Y, Li P, Zhou J, Liu Z (2019) Numnet: Machine reading comprehension with numerical reasoning. In: EMNLP, pp. 2474–2484 Ran Q, Lin Y, Li P, Zhou J, Liu Z (2019) Numnet: Machine reading comprehension with numerical reasoning. In: EMNLP, pp. 2474–2484
Zurück zum Zitat Ribeiro MT, Wu T, Guestrin C, Singh S (2020) Beyond accuracy: Behavioral testing of NLP models with checklist. In: ACL, pp. 4902–4912 Ribeiro MT, Wu T, Guestrin C, Singh S (2020) Beyond accuracy: Behavioral testing of NLP models with checklist. In: ACL, pp. 4902–4912
Zurück zum Zitat Robinson J.D, Chuang C, Sra S, Jegelka S (2021) Contrastive learning with hard negative samples. In: ICLR Robinson J.D, Chuang C, Sra S, Jegelka S (2021) Contrastive learning with hard negative samples. In: ICLR
Zurück zum Zitat Saha A, Joty SR, Hoi SCH (2021) Weakly supervised neuro-symbolic module networks for numerical reasoning. CoRR abs/2101.11802 Saha A, Joty SR, Hoi SCH (2021) Weakly supervised neuro-symbolic module networks for numerical reasoning. CoRR abs/2101.11802
Zurück zum Zitat Sanh V, Debut L, Chaumond J, Wolf T (2019) Distilbert, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR abs/1910.01108 Sanh V, Debut L, Chaumond J, Wolf T (2019) Distilbert, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR abs/1910.01108
Zurück zum Zitat Segal JA (1984) Predicting supreme court cases probabilistically: The search and seizure cases, 1962-1981. APSA 78 Segal JA (1984) Predicting supreme court cases probabilistically: The search and seizure cases, 1962-1981. APSA 78
Zurück zum Zitat Sermanet P, Lynch C, Chebotar Y, Hsu J, Jang E, Schaal S, Levine S (2018) Time-contrastive networks: Self-supervised learning from video. In: ICRA, pp. 1134–1141 Sermanet P, Lynch C, Chebotar Y, Hsu J, Jang E, Schaal S, Levine S (2018) Time-contrastive networks: Self-supervised learning from video. In: ICRA, pp. 1134–1141
Zurück zum Zitat Shi X, Cao W, Raschka S (2021) Deep neural networks for rank-consistent ordinal regression based on conditional probabilities. CoRR abs/2111.08851 Shi X, Cao W, Raschka S (2021) Deep neural networks for rank-consistent ordinal regression based on conditional probabilities. CoRR abs/2111.08851
Zurück zum Zitat Shorten C, Khoshgoftaar TM, Furht B (2021) Text data augmentation for deep learning. J Big Data 8(1):101CrossRef Shorten C, Khoshgoftaar TM, Furht B (2021) Text data augmentation for deep learning. J Big Data 8(1):101CrossRef
Zurück zum Zitat Spithourakis GP, Riedel S (2018) Numeracy for language models: Evaluating and improving their ability to predict numbers. In: ACL, pp. 2104–2115 Spithourakis GP, Riedel S (2018) Numeracy for language models: Evaluating and improving their ability to predict numbers. In: ACL, pp. 2104–2115
Zurück zum Zitat Thawani A, Pujara J, Ilievski F, Szekely PA (2021) Representing numbers in NLP: a survey and a vision. In: NAACL, pp. 644–656 Thawani A, Pujara J, Ilievski F, Szekely PA (2021) Representing numbers in NLP: a survey and a vision. In: NAACL, pp. 644–656
Zurück zum Zitat Tian Y, Krishnan D, Isola P (2020) Contrastive multiview coding. In: ECCV, vol. 12356, pp. 776–794. Springer Tian Y, Krishnan D, Isola P (2020) Contrastive multiview coding. In: ECCV, vol. 12356, pp. 776–794. Springer
Zurück zum Zitat Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. JMLR 9(11) Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. JMLR 9(11)
Zurück zum Zitat van den Oord A, Li Y, Vinyals O (2018) Representation learning with contrastive predictive coding. CoRR abs/1807.03748 van den Oord A, Li Y, Vinyals O (2018) Representation learning with contrastive predictive coding. CoRR abs/1807.03748
Zurück zum Zitat Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. Neural Inf Process Syst, pp. 5998–6008 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. Neural Inf Process Syst, pp. 5998–6008
Zurück zum Zitat Wu Z, Xiong Y, Yu SX, Lin D (2018) Unsupervised feature learning via non-parametric instance discrimination. In: CVPR, pp. 3733–3742 Wu Z, Xiong Y, Yu SX, Lin D (2018) Unsupervised feature learning via non-parametric instance discrimination. In: CVPR, pp. 3733–3742
Zurück zum Zitat Xiao C, Zhong H, Guo Z, Tu C, Liu Z, Sun M, Feng Y, Han X, Hu Z, Wang H, Xu J (2018) CAIL2018: A large-scale legal dataset for judgment prediction. CoRR abs/1807.02478 Xiao C, Zhong H, Guo Z, Tu C, Liu Z, Sun M, Feng Y, Han X, Hu Z, Wang H, Xu J (2018) CAIL2018: A large-scale legal dataset for judgment prediction. CoRR abs/1807.02478
Zurück zum Zitat Xu N, Wang P, Chen L, Pan L, Wang X, Zhao J (2020) Distinguish confusing law articles for legal judgment prediction. In: ACL, pp. 3086–3095 Xu N, Wang P, Chen L, Pan L, Wang X, Zhao J (2020) Distinguish confusing law articles for legal judgment prediction. In: ACL, pp. 3086–3095
Zurück zum Zitat Yang W, Jia W, Zhou X, Luo Y (2019) Legal judgment prediction via multi-perspective bi-feedback network. In: IJCAI, pp. 4085–4091 Yang W, Jia W, Zhou X, Luo Y (2019) Legal judgment prediction via multi-perspective bi-feedback network. In: IJCAI, pp. 4085–4091
Zurück zum Zitat Yoran O, Talmor A, Berant J (2022) Turning tables: Generating examples from semi-structured tables for endowing language models with reasoning skills. In: ACL, pp. 6016–6031 Yoran O, Talmor A, Berant J (2022) Turning tables: Generating examples from semi-structured tables for endowing language models with reasoning skills. In: ACL, pp. 6016–6031
Zurück zum Zitat Yue L, Liu Q, Jin B, Wu H, Zhang K, An Y, Cheng M, Yin B, Wu D (2021) Neurjudge: A circumstance-aware neural framework for legal judgment prediction. In: SIGIR, pp. 973–982 Yue L, Liu Q, Jin B, Wu H, Zhang K, An Y, Cheng M, Yin B, Wu D (2021) Neurjudge: A circumstance-aware neural framework for legal judgment prediction. In: SIGIR, pp. 973–982
Zurück zum Zitat Zhong H, Guo Z, Tu C, Xiao C, Liu Z, Sun M (2018) Legal judgment prediction via topological learning. In: EMNLP, pp. 3540–3549 Zhong H, Guo Z, Tu C, Xiao C, Liu Z, Sun M (2018) Legal judgment prediction via topological learning. In: EMNLP, pp. 3540–3549
Zurück zum Zitat Zhong H, Xiao C, Tu C, Zhang T, Liu Z, Sun M (2020) How does NLP benefit legal system: A summary of legal artificial intelligence. In: ACL, pp. 5218–5230 Zhong H, Xiao C, Tu C, Zhang T, Liu Z, Sun M (2020) How does NLP benefit legal system: A summary of legal artificial intelligence. In: ACL, pp. 5218–5230
Metadaten
Titel
Judicial knowledge-enhanced magnitude-aware reasoning for numerical legal judgment prediction
verfasst von
Sheng Bi
Zhiyao Zhou
Lu Pan
Guilin Qi
Publikationsdatum
02.11.2022
Verlag
Springer Netherlands
Erschienen in
Artificial Intelligence and Law / Ausgabe 4/2023
Print ISSN: 0924-8463
Elektronische ISSN: 1572-8382
DOI
https://doi.org/10.1007/s10506-022-09337-4