Skip to main content

2019 | OriginalPaper | Buchkapitel

8. Keratin-Based Biotechnological Applications

verfasst von : Kush Kumar Nayak, Piyush Parkhey, Bidyut Mazumdar

Erschienen in: Keratin as a Protein Biopolymer

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present chapter is aimed towards giving an overview of the applications of keratin as a potential biomaterial substitute in the field of biotechnology. Keratin is a fibrous protein and considered as biomaterial due to its biocompatible and biodegradable characteristics. Its use as biopolymer has been the subject of intense investigation over the past few years. Wool, feather, horn and hooves, etc., are strong in terms of mechanical strength due to the presence of keratin. But once keratin is extracted from natural sources then, it becomes poor in mechanical properties. So, the blending of keratin with other biopolymer can improve the material properties like strength, flexibility, and water vapor permeability. The malleable nature of keratin proves its biotechnological applications such as tissue engineering scaffold, green composites, green cement, bioplastic, etc. The functional groups and chemical structures of keratin govern its properties and morphology, which gives an opportunity to control the design of desired molecular structure for various applications, and varies from industrial to the biotechnological field. Recently, the biodegradable keratin-based biopolymers have gained considerable importance in the medical field as they avoid additional surgery to remove the implants and lack of medical waste burden. Thus, much attention needs to be undertaken on the development of composite biomaterial derived from keratin.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13:377–383CrossRefPubMed Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13:377–383CrossRefPubMed
Zurück zum Zitat Bandyopadhyay A, Bose S (2013) Characterization of biomaterials, 1st edn. Elsevier, The Netherlands Bandyopadhyay A, Bose S (2013) Characterization of biomaterials, 1st edn. Elsevier, The Netherlands
Zurück zum Zitat Barone JR, Schmidt WF (2005) Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos Sci Technol 65:173–181CrossRef Barone JR, Schmidt WF (2005) Polyethylene reinforced with keratin fibers obtained from chicken feathers. Compos Sci Technol 65:173–181CrossRef
Zurück zum Zitat Bertini F, Canetti M, Patrucco A, Zoccola M (2013) Wool keratin–polypropylene composites: properties and thermal degradation. Polym Degrad Stab 98:980–987CrossRef Bertini F, Canetti M, Patrucco A, Zoccola M (2013) Wool keratin–polypropylene composites: properties and thermal degradation. Polym Degrad Stab 98:980–987CrossRef
Zurück zum Zitat Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 85:325–333CrossRef Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 85:325–333CrossRef
Zurück zum Zitat Bourtoom T (2009) Edible protein films: properties enhancement. Int Food Res J 16:1–9 Bourtoom T (2009) Edible protein films: properties enhancement. Int Food Res J 16:1–9
Zurück zum Zitat Brandenburg AH, Weller CL, Testin RF (1993) Edible films and coatings from soy protein. J Food Sci 58:1086–1089CrossRef Brandenburg AH, Weller CL, Testin RF (1993) Edible films and coatings from soy protein. J Food Sci 58:1086–1089CrossRef
Zurück zum Zitat Bullions TA, Hoffman D, Price-O’Brien J, Loos AC (2003) Feather fiber/cellulose fiber/polypropylene composites manufactured via the wetlay papermaking process. In: International Nonwovens Technical Conference (INTC 2003), Balt, MD, USA Bullions TA, Hoffman D, Price-O’Brien J, Loos AC (2003) Feather fiber/cellulose fiber/polypropylene composites manufactured via the wetlay papermaking process. In: International Nonwovens Technical Conference (INTC 2003), Balt, MD, USA
Zurück zum Zitat Bullions TA, Gillespie RA, Price-O’Brien J, Loos AC (2004) The effect of maleic anhydride modified polypropylene on the mechanical properties of feather fiber, kraft pulp, polypropylene composites. J Appl Polym Sci 92:3771–3783CrossRef Bullions TA, Gillespie RA, Price-O’Brien J, Loos AC (2004) The effect of maleic anhydride modified polypropylene on the mechanical properties of feather fiber, kraft pulp, polypropylene composites. J Appl Polym Sci 92:3771–3783CrossRef
Zurück zum Zitat Cadée JA, Brouwer LA, den Otter W et al (2001) A comparative biocompatibility study of microspheres based on crosslinked dextran or poly(lactic-co-glycolic)acid after subcutaneous injection in rats. J Biomed Mater Res 56:600–609CrossRefPubMed Cadée JA, Brouwer LA, den Otter W et al (2001) A comparative biocompatibility study of microspheres based on crosslinked dextran or poly(lactic-co-glycolic)acid after subcutaneous injection in rats. J Biomed Mater Res 56:600–609CrossRefPubMed
Zurück zum Zitat Calkins M (2009) Materials for sustainable sites: a complete guide to the evaluation, selection, and use of sustainable construction materials. Wiley, Hoboke Calkins M (2009) Materials for sustainable sites: a complete guide to the evaluation, selection, and use of sustainable construction materials. Wiley, Hoboke
Zurück zum Zitat Cutter CN, Sumner SS (2002) Application of edible coatings on muscle foods. In: Gennedios A (ed) Protein-based films and coatings. CRC, Boca Raton, FL, pp 467–484 Cutter CN, Sumner SS (2002) Application of edible coatings on muscle foods. In: Gennedios A (ed) Protein-based films and coatings. CRC, Boca Raton, FL, pp 467–484
Zurück zum Zitat Cziple FA, Marques AJV (2008) Biopolymers versus synthetic polymers. Eftimie Murgu University of Resita, Romania, pp 125–132 Cziple FA, Marques AJV (2008) Biopolymers versus synthetic polymers. Eftimie Murgu University of Resita, Romania, pp 125–132
Zurück zum Zitat de Vos P, Hoogmoed CG, Busscher HJ (2002) Chemistry and biocompatibility of alginate-PLL capsules for immunoprotection of mammalian cells. J Biomed Mater Res 60:252–259CrossRefPubMed de Vos P, Hoogmoed CG, Busscher HJ (2002) Chemistry and biocompatibility of alginate-PLL capsules for immunoprotection of mammalian cells. J Biomed Mater Res 60:252–259CrossRefPubMed
Zurück zum Zitat Draye JP, Delaey B, Van de Voorde A et al (1998) In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:1677–1687CrossRefPubMed Draye JP, Delaey B, Van de Voorde A et al (1998) In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:1677–1687CrossRefPubMed
Zurück zum Zitat Feughelman M (1959) A two-phase structure for keratin fibers. Text Res J 29:223–228CrossRef Feughelman M (1959) A two-phase structure for keratin fibers. Text Res J 29:223–228CrossRef
Zurück zum Zitat Fine DM, Tobias AH (2007) Cardiovascular device infections in dogs: report of 8 cases and review of the literature. J Vet Intern Med 21:1265–1271CrossRefPubMed Fine DM, Tobias AH (2007) Cardiovascular device infections in dogs: report of 8 cases and review of the literature. J Vet Intern Med 21:1265–1271CrossRefPubMed
Zurück zum Zitat Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55:1613–1629CrossRefPubMed Geiger M, Li RH, Friess W (2003) Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55:1613–1629CrossRefPubMed
Zurück zum Zitat Karthikeyan R, Balaji S, Sehgal PK (2007) Industrial applications of keratins—a review. J Sci Ind Res 66:710–715 Karthikeyan R, Balaji S, Sehgal PK (2007) Industrial applications of keratins—a review. J Sci Ind Res 66:710–715
Zurück zum Zitat Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349CrossRefPubMed Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349CrossRefPubMed
Zurück zum Zitat Landsman AS, Cook J, Cook E et al (2011) A retrospective clinical study of 188 consecutive patients to examine the effectiveness of a biologically active cryopreserved human skin allograft (TheraSkin®) on the treatment of diabetic foot ulcers and venous leg ulcers. Foot Ankle Spec 4:29–41. https://doi.org/10.1177/1938640010387417CrossRefPubMed Landsman AS, Cook J, Cook E et al (2011) A retrospective clinical study of 188 consecutive patients to examine the effectiveness of a biologically active cryopreserved human skin allograft (TheraSkin®) on the treatment of diabetic foot ulcers and venous leg ulcers. Foot Ankle Spec 4:29–41. https://​doi.​org/​10.​1177/​1938640010387417​CrossRefPubMed
Zurück zum Zitat Liu H, Slamovich EB, Webster TJ (2006) Less harmful acidic degradation of poly(lacticco-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int J Nanomedicine 1:541–545CrossRefPubMedPubMedCentral Liu H, Slamovich EB, Webster TJ (2006) Less harmful acidic degradation of poly(lacticco-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int J Nanomedicine 1:541–545CrossRefPubMedPubMedCentral
Zurück zum Zitat Marston WA, Hanft J, Norwood P et al (2003) The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26:1701–1715CrossRefPubMed Marston WA, Hanft J, Norwood P et al (2003) The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26:1701–1715CrossRefPubMed
Zurück zum Zitat Matsumoto T, Okazaki M, Nakahira A et al (2007) Modification of apatite materials for bone tissue engineering and drug delivery carriers. Curr Med Chem 14:2726–2733CrossRefPubMed Matsumoto T, Okazaki M, Nakahira A et al (2007) Modification of apatite materials for bone tissue engineering and drug delivery carriers. Curr Med Chem 14:2726–2733CrossRefPubMed
Zurück zum Zitat Mendes SC, Reis RL, Bovell YP et al (2001) Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials 22:2057–2064CrossRefPubMed Mendes SC, Reis RL, Bovell YP et al (2001) Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials 22:2057–2064CrossRefPubMed
Zurück zum Zitat Meyers MA, Chen P-Y (2014) Biological materials science: biological materials, bioinspired materials, and biomaterials. Cambridge University Press and the Materials Research Society, Cambridge Meyers MA, Chen P-Y (2014) Biological materials science: biological materials, bioinspired materials, and biomaterials. Cambridge University Press and the Materials Research Society, Cambridge
Zurück zum Zitat Moses JW, Kipshidze N, Leon MB (2002) Perspectives of drug-eluting stents: the next revolution. Am J Cardiovasc Drugs 2:163–172CrossRefPubMed Moses JW, Kipshidze N, Leon MB (2002) Perspectives of drug-eluting stents: the next revolution. Am J Cardiovasc Drugs 2:163–172CrossRefPubMed
Zurück zum Zitat Naughton G, Mansbridge J, Gentzkow G (1997) A metabolically active human dermal replacement for the treatment of diabetic foot ulcers. Artif Organs 21:1203–1210CrossRefPubMed Naughton G, Mansbridge J, Gentzkow G (1997) A metabolically active human dermal replacement for the treatment of diabetic foot ulcers. Artif Organs 21:1203–1210CrossRefPubMed
Zurück zum Zitat Nozynski JK, Religa Z, Wszołek J et al (2001) Biological heart valve an alternative to mechanical valve. Med Sci Monit 7:550–562PubMed Nozynski JK, Religa Z, Wszołek J et al (2001) Biological heart valve an alternative to mechanical valve. Med Sci Monit 7:550–562PubMed
Zurück zum Zitat Panchal B, Bagdadi A, Roy I (2013) Polyhydroxyalkanoates: the natural polymers produced by bacterial fermentation. In: Thomas S, Visakh P, Mathew A (eds) Advances in natural polymers, vol 18. Springer, Berlin, pp 397–421 Panchal B, Bagdadi A, Roy I (2013) Polyhydroxyalkanoates: the natural polymers produced by bacterial fermentation. In: Thomas S, Visakh P, Mathew A (eds) Advances in natural polymers, vol 18. Springer, Berlin, pp 397–421
Zurück zum Zitat Paradossi G, Cavalieri F, Chiessi E et al (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med 14:687–691CrossRefPubMed Paradossi G, Cavalieri F, Chiessi E et al (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med 14:687–691CrossRefPubMed
Zurück zum Zitat Petrulyte S (2008) Advanced textile materials and biopolymers in wound management. Dan Med Bull 55:72–77PubMed Petrulyte S (2008) Advanced textile materials and biopolymers in wound management. Dan Med Bull 55:72–77PubMed
Zurück zum Zitat Pol H, Dawson P, Acton J, Ogale A (2002) Soy protein isolate/corn-zein laminated films: transport and mechanical properties. J Food Sci 67:212–217CrossRef Pol H, Dawson P, Acton J, Ogale A (2002) Soy protein isolate/corn-zein laminated films: transport and mechanical properties. J Food Sci 67:212–217CrossRef
Zurück zum Zitat Royals MA, Fujita SM, Yewey GL et al (1999) Biocompatibility of a biodegradable in situ forming implant system in rhesus monkeys. J Biomed Mater Res 45:231–239CrossRefPubMed Royals MA, Fujita SM, Yewey GL et al (1999) Biocompatibility of a biodegradable in situ forming implant system in rhesus monkeys. J Biomed Mater Res 45:231–239CrossRefPubMed
Zurück zum Zitat Schuster J (2003) Polypropylene reinforced with chicken feathers. In: International conference on composite materials (ICCM-14), San Diego, CA Schuster J (2003) Polypropylene reinforced with chicken feathers. In: International conference on composite materials (ICCM-14), San Diego, CA
Zurück zum Zitat Spector M (2007) Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems. Swiss Med Wkly 137(Suppl):157S–165SPubMed Spector M (2007) Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems. Swiss Med Wkly 137(Suppl):157S–165SPubMed
Zurück zum Zitat Tanabe T, Okitsu N, Tachibana A, Yamauchi K (2002) Preparation and characterization of keratin–chitosan composite film. Biomaterials 23:817–825CrossRefPubMed Tanabe T, Okitsu N, Tachibana A, Yamauchi K (2002) Preparation and characterization of keratin–chitosan composite film. Biomaterials 23:817–825CrossRefPubMed
Zurück zum Zitat Tsai WB, Grunkemeier JM, McFarland CD, Horbett TA (2002) Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand’s factor. J Biomed Mater Res 60:348–359CrossRefPubMed Tsai WB, Grunkemeier JM, McFarland CD, Horbett TA (2002) Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand’s factor. J Biomed Mater Res 60:348–359CrossRefPubMed
Zurück zum Zitat Vasconcelos A, Cavaco-Paulo A (2013) The use of keratin in biomedical applications. Curr Drug Targets 14:612–619CrossRefPubMed Vasconcelos A, Cavaco-Paulo A (2013) The use of keratin in biomedical applications. Curr Drug Targets 14:612–619CrossRefPubMed
Zurück zum Zitat Vercruysse KP, Prestwich GD (1998) Hyaluronate derivatives in drug delivery. Crit Rev Ther Drug Carrier Syst 15:513–555CrossRefPubMed Vercruysse KP, Prestwich GD (1998) Hyaluronate derivatives in drug delivery. Crit Rev Ther Drug Carrier Syst 15:513–555CrossRefPubMed
Zurück zum Zitat Veves A, Falanga V, Armstrong DG et al (2001) Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 24:290–295CrossRefPubMed Veves A, Falanga V, Armstrong DG et al (2001) Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 24:290–295CrossRefPubMed
Zurück zum Zitat Wang YX, Cao XJ (2012) Extracting keratin from chicken feathers by using a hydrophobic ionic liquid. Process Biochem 47(5): 896–899CrossRef Wang YX, Cao XJ (2012) Extracting keratin from chicken feathers by using a hydrophobic ionic liquid. Process Biochem 47(5): 896–899CrossRef
Zurück zum Zitat Wang YC, Lin MC, Wang DM, Hsieh HJ (2003) Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24:1047–1057CrossRefPubMed Wang YC, Lin MC, Wang DM, Hsieh HJ (2003) Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24:1047–1057CrossRefPubMed
Zurück zum Zitat Williams DF (2011) The Williams dictionary of biomaterials. Liverpool University Press, LiverpoolCrossRef Williams DF (2011) The Williams dictionary of biomaterials. Liverpool University Press, LiverpoolCrossRef
Zurück zum Zitat Wrzesniewska-Tosik K, Adamiec J (2007) Biocomposites with a content of keratin from chicken feathers. Fibres Text East Eur 15:106–112 Wrzesniewska-Tosik K, Adamiec J (2007) Biocomposites with a content of keratin from chicken feathers. Fibres Text East Eur 15:106–112
Zurück zum Zitat Xing ZC, Yuan J, Chae WP et al (2011) Keratin nanofibers as a biomaterial. In: 2010 international conference on nanotechnology and biosensors (IPCBEE), pp 120–124 Xing ZC, Yuan J, Chae WP et al (2011) Keratin nanofibers as a biomaterial. In: 2010 international conference on nanotechnology and biosensors (IPCBEE), pp 120–124
Zurück zum Zitat Zaulyanov L, Kirsner RS (2007) A review of a bi-layered living cell treatment (Apligraf) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2:93–98CrossRefPubMedPubMedCentral Zaulyanov L, Kirsner RS (2007) A review of a bi-layered living cell treatment (Apligraf) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2:93–98CrossRefPubMedPubMedCentral
Metadaten
Titel
Keratin-Based Biotechnological Applications
verfasst von
Kush Kumar Nayak
Piyush Parkhey
Bidyut Mazumdar
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-02901-2_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.