Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Keratin Processing

verfasst von : Diego Omar Sanchez Ramirez, Riccardo Andrea Carletto, Francesca Truffa Giachet

Erschienen in: Keratin as a Protein Biopolymer

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter deals with the various ways in which keratin (extracted from different sources) can be processed to obtain different types of products. In the first section, solvents and polymers that must be employed to make this natural biopolymer usable are discussed. Sections 25 are mainly oriented in the transformations of keratin in processes such as spinning, electrospinning, casting, foaming, and freeze-drying. In addition, some products (fibers, nanofibers, films, coating, and sponge) and applications (filtration, adsorption, and scaffolds) corresponding to the procedures mentioned above are reported. The last section is related to the chemical treatments (e.g., crosslinking) applied to keratin to modify its properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alemdar A, Iridag Y, Kazanci M (2005) Flow behavior of regenerated wool-keratin proteins in different mediums. Int J Biol Macromol 35:151–153PubMedCrossRef Alemdar A, Iridag Y, Kazanci M (2005) Flow behavior of regenerated wool-keratin proteins in different mediums. Int J Biol Macromol 35:151–153PubMedCrossRef
Zurück zum Zitat Aluigi A, Corbellini A, Rombaldoni F et al (2013a) Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solutions. Text Res J 83:1574–1586CrossRef Aluigi A, Corbellini A, Rombaldoni F et al (2013a) Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solutions. Text Res J 83:1574–1586CrossRef
Zurück zum Zitat Aluigi A, Corbellini A, Rombaldonia F et al (2013b) Morphological and structural investigation of wool-derived keratin nanofibres crosslinked by thermal treatment. Int J Biol Macromol 57:30–37PubMedCrossRef Aluigi A, Corbellini A, Rombaldonia F et al (2013b) Morphological and structural investigation of wool-derived keratin nanofibres crosslinked by thermal treatment. Int J Biol Macromol 57:30–37PubMedCrossRef
Zurück zum Zitat Aluigi A, Tonetti C, Vineis C et al (2011) Adsorption of copper(II) ions by keratin/PA6 blend nanofibres. Eur Polym J 47:1756–1764CrossRef Aluigi A, Tonetti C, Vineis C et al (2011) Adsorption of copper(II) ions by keratin/PA6 blend nanofibres. Eur Polym J 47:1756–1764CrossRef
Zurück zum Zitat Aluigi A, Tonetti C, Vineis C et al (2012a) Study on the adsorption of chromium(VI) by hydrolyzed keratin/polyamide 6 blend nanofibers. J Nanosci Nanotechnol 12:7250–7259PubMedCrossRef Aluigi A, Tonetti C, Vineis C et al (2012a) Study on the adsorption of chromium(VI) by hydrolyzed keratin/polyamide 6 blend nanofibers. J Nanosci Nanotechnol 12:7250–7259PubMedCrossRef
Zurück zum Zitat Aluigi A, Tonetti C, Vineis C et al (2012b) Wool keratin nanofibres for copper(II) adsorption. J Biobased Mater Bioenergy 6:1–7CrossRef Aluigi A, Tonetti C, Vineis C et al (2012b) Wool keratin nanofibres for copper(II) adsorption. J Biobased Mater Bioenergy 6:1–7CrossRef
Zurück zum Zitat Aluigi A, Varesano A, Montarsolo A et al (2007a) Electrospinning of keratin/poly(ethylene oxide) blend nanofibers. J Appl Polym Sci 104:863–870CrossRef Aluigi A, Varesano A, Montarsolo A et al (2007a) Electrospinning of keratin/poly(ethylene oxide) blend nanofibers. J Appl Polym Sci 104:863–870CrossRef
Zurück zum Zitat Aluigi A, Varesano A, Vineis C et al (2017) Electrospinning of immiscible systems: the wool keratin/polyamide-6 case study. Mater Des 127:144–153CrossRef Aluigi A, Varesano A, Vineis C et al (2017) Electrospinning of immiscible systems: the wool keratin/polyamide-6 case study. Mater Des 127:144–153CrossRef
Zurück zum Zitat Aluigi A, Vineis C, Ceria A et al (2008a) Composite biomaterials from fibre wastes: characterization of wool–cellulose acetate blends. Compos A 39:126–132CrossRef Aluigi A, Vineis C, Ceria A et al (2008a) Composite biomaterials from fibre wastes: characterization of wool–cellulose acetate blends. Compos A 39:126–132CrossRef
Zurück zum Zitat Aluigi A, Vineis C, Tonin C et al (2009) Wool keratin-based nanofibres for active filtration of air and water. J Biobased Mater Bioenergy 3:311–319CrossRef Aluigi A, Vineis C, Tonin C et al (2009) Wool keratin-based nanofibres for active filtration of air and water. J Biobased Mater Bioenergy 3:311–319CrossRef
Zurück zum Zitat Aluigi A, Vineis C, Varesano A et al (2008b) Structure and properties of keratin/PEO blend nanofibres. Eur Polym J 44:2465–2475CrossRef Aluigi A, Vineis C, Varesano A et al (2008b) Structure and properties of keratin/PEO blend nanofibres. Eur Polym J 44:2465–2475CrossRef
Zurück zum Zitat Aluigi A, Zoccola M, Vineis C et al (2007b) Study on the structure and properties of wool keratin regenerated from formic acid. Int J Biol Macromol 41:266–273PubMedCrossRef Aluigi A, Zoccola M, Vineis C et al (2007b) Study on the structure and properties of wool keratin regenerated from formic acid. Int J Biol Macromol 41:266–273PubMedCrossRef
Zurück zum Zitat Balaji S, Kumar R, Sripriya R et al (2012) Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications. J Mater Sci Eng C 32:975–982CrossRef Balaji S, Kumar R, Sripriya R et al (2012) Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications. J Mater Sci Eng C 32:975–982CrossRef
Zurück zum Zitat Barati D, Kader S, Pajoum Shariati SR et al (2017) Synthesis and characterization of photo-cross-linkable keratin hydrogels for stem cell encapsulation. Biomacromolecules 18:398–412PubMedCrossRef Barati D, Kader S, Pajoum Shariati SR et al (2017) Synthesis and characterization of photo-cross-linkable keratin hydrogels for stem cell encapsulation. Biomacromolecules 18:398–412PubMedCrossRef
Zurück zum Zitat Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296:1–8CrossRef Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296:1–8CrossRef
Zurück zum Zitat Barone JR, Schmidt WF, Gregoire N (2006) Extrusion of feather keratin. J Appl Polym Sci 100:1432–1442CrossRef Barone JR, Schmidt WF, Gregoire N (2006) Extrusion of feather keratin. J Appl Polym Sci 100:1432–1442CrossRef
Zurück zum Zitat Barone JR, Schmidt WF, Liebner CF (2005) Thermally processed keratin films. J Appl Polym Sci 97:1644–1651CrossRef Barone JR, Schmidt WF, Liebner CF (2005) Thermally processed keratin films. J Appl Polym Sci 97:1644–1651CrossRef
Zurück zum Zitat Bergsma JE, Rozema FR, Bos RRM et al (1995) In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles. Biomaterials 16:267–274PubMedCrossRef Bergsma JE, Rozema FR, Bos RRM et al (1995) In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles. Biomaterials 16:267–274PubMedCrossRef
Zurück zum Zitat Bhardwaj N, Sow WT, Devi D et al (2015) Silk fibroin-keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. Integr Biol 7:53–63CrossRef Bhardwaj N, Sow WT, Devi D et al (2015) Silk fibroin-keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. Integr Biol 7:53–63CrossRef
Zurück zum Zitat Bhavsar PS, Zoccola M, Patrucco A et al (2017) Superheated water hydrolyzed keratin: a new application as a foaming agent in foam dyeing of cotton and wool fabrics. ACS Sustainable Chem Eng 5:9150–9159CrossRef Bhavsar PS, Zoccola M, Patrucco A et al (2017) Superheated water hydrolyzed keratin: a new application as a foaming agent in foam dyeing of cotton and wool fabrics. ACS Sustainable Chem Eng 5:9150–9159CrossRef
Zurück zum Zitat Bryner MA, Armantrout JE, Johnson BS (2006) Electroblowing web formation process. US Patent 2006/0138710, 29 Jun 2006 Bryner MA, Armantrout JE, Johnson BS (2006) Electroblowing web formation process. US Patent 2006/0138710, 29 Jun 2006
Zurück zum Zitat Burnett LR, Rahmany MB, Richter JR et al (2013) Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials 34:2632–2640PubMedCrossRef Burnett LR, Rahmany MB, Richter JR et al (2013) Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials 34:2632–2640PubMedCrossRef
Zurück zum Zitat Cardamone JM, Tunick MH, Onwulata C (2013) Keratin sponge/hydrogel: I. Fabrication and characterization. Tex Res J 83:661–670 Cardamone JM, Tunick MH, Onwulata C (2013) Keratin sponge/hydrogel: I. Fabrication and characterization. Tex Res J 83:661–670
Zurück zum Zitat Chen HL, Burns LD (2006) Environmental analysis of textile products. Cloth Text Res J 24:248–261CrossRef Chen HL, Burns LD (2006) Environmental analysis of textile products. Cloth Text Res J 24:248–261CrossRef
Zurück zum Zitat Choi J, Panthi G, Liu Y et al (2015) Keratin/poly(vinyl alcohol) blended nanofibers with high optical transmittance. Polymer 58:146–152CrossRef Choi J, Panthi G, Liu Y et al (2015) Keratin/poly(vinyl alcohol) blended nanofibers with high optical transmittance. Polymer 58:146–152CrossRef
Zurück zum Zitat Cilurzoa F, Selmina F, Aluigi A et al (2013) Regenerated keratin proteins as potential biomaterial for drug delivery. Polym Adv Technol 24:1025–1028CrossRef Cilurzoa F, Selmina F, Aluigi A et al (2013) Regenerated keratin proteins as potential biomaterial for drug delivery. Polym Adv Technol 24:1025–1028CrossRef
Zurück zum Zitat de Guzman RC, Saul JM, Ellenburg MD et al (2013) Bone regeneration with BMP-2 delivered from keratose scaffolds. Biomaterials 34:1644–1656PubMedCrossRef de Guzman RC, Saul JM, Ellenburg MD et al (2013) Bone regeneration with BMP-2 delivered from keratose scaffolds. Biomaterials 34:1644–1656PubMedCrossRef
Zurück zum Zitat de Guzman RC, Tsuda SM, Ton MTN et al (2015) Binding interactions of keratin-based hair fiber extract to gold, keratin, and BMP-2. PLoS ONE 10:1–12 de Guzman RC, Tsuda SM, Ton MTN et al (2015) Binding interactions of keratin-based hair fiber extract to gold, keratin, and BMP-2. PLoS ONE 10:1–12
Zurück zum Zitat Deitzel JM, Kleinmeyer J, Hirvonen JK et al (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42:8163–8170CrossRef Deitzel JM, Kleinmeyer J, Hirvonen JK et al (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42:8163–8170CrossRef
Zurück zum Zitat Desai NP, Hubbel JA (1991) Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials 12:144–153PubMedCrossRef Desai NP, Hubbel JA (1991) Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials 12:144–153PubMedCrossRef
Zurück zum Zitat Dias GJ, Mahoney P, Swain M et al (2010) Keratin–hydroxyapatite composites: biocompatibility, osseointegration, and physical properties in an ovine model. J Biomed Mater Res, Part A 95A:1084–1095CrossRef Dias GJ, Mahoney P, Swain M et al (2010) Keratin–hydroxyapatite composites: biocompatibility, osseointegration, and physical properties in an ovine model. J Biomed Mater Res, Part A 95A:1084–1095CrossRef
Zurück zum Zitat Dickerson MB, Sierra AA, Bedford NM et al (2013) Keratin-based antimicrobial textiles, films and nanofibers. J Mater Chem B 1:5505–5514CrossRefPubMed Dickerson MB, Sierra AA, Bedford NM et al (2013) Keratin-based antimicrobial textiles, films and nanofibers. J Mater Chem B 1:5505–5514CrossRefPubMed
Zurück zum Zitat Ding B, Kimura E, Sato T et al (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895–1902CrossRef Ding B, Kimura E, Sato T et al (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895–1902CrossRef
Zurück zum Zitat Doshi J, Reneker DH (1993) Electrospinning process and applications of electrospun fibers. In: Conference record of the 1993 IEEE industry applications conference twenty-eighth IAS annual meeting, Toronto, October 1993. Lecture notes in industrial application society annual meeting, vol 3. IEEE, pp 1698–1703 Doshi J, Reneker DH (1993) Electrospinning process and applications of electrospun fibers. In: Conference record of the 1993 IEEE industry applications conference twenty-eighth IAS annual meeting, Toronto, October 1993. Lecture notes in industrial application society annual meeting, vol 3. IEEE, pp 1698–1703
Zurück zum Zitat Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151–160CrossRef Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151–160CrossRef
Zurück zum Zitat Dotti F, Varesano A, Montarsolo A et al (2007) Electrospun porous mats for high efficiency filtration. J Ind Text 37:151–162CrossRef Dotti F, Varesano A, Montarsolo A et al (2007) Electrospun porous mats for high efficiency filtration. J Ind Text 37:151–162CrossRef
Zurück zum Zitat Dou Y, Zhang B, He M et al (2014) Preparation and physicochemical properties of dialdehyde starch crosslinked feather keratin/PVA composite films. J Macromol Sci Part A Pure Appl Chem 51:1009–1015CrossRef Dou Y, Zhang B, He M et al (2014) Preparation and physicochemical properties of dialdehyde starch crosslinked feather keratin/PVA composite films. J Macromol Sci Part A Pure Appl Chem 51:1009–1015CrossRef
Zurück zum Zitat Dou Y, Zhang B, He M et al (2015) Keratin/polyvinyl alcohol blend films cross-linked by dialdehyde starch and their potential application for drug release. Polymers 7:580–591CrossRef Dou Y, Zhang B, He M et al (2015) Keratin/polyvinyl alcohol blend films cross-linked by dialdehyde starch and their potential application for drug release. Polymers 7:580–591CrossRef
Zurück zum Zitat Ebrahimgol F, Tavanaia H, Alihosseinia F et al (2014) Electrosprayed recovered wool keratin nanoparticles. Polym Adv Technol 25:1001–1007CrossRef Ebrahimgol F, Tavanaia H, Alihosseinia F et al (2014) Electrosprayed recovered wool keratin nanoparticles. Polym Adv Technol 25:1001–1007CrossRef
Zurück zum Zitat Edwards A, Jarvis D, Hopkins T et al (2015) Poly(ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J Biomed Mater Res, Part B 103B:21–30CrossRef Edwards A, Jarvis D, Hopkins T et al (2015) Poly(ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J Biomed Mater Res, Part B 103B:21–30CrossRef
Zurück zum Zitat El-Kheir AA, Mowafi S, Abou Taleb M et al (2012) Preparation and characterization of keratin-polyvinyl alcohol composite film. Egypt J Chem 55:491–507CrossRef El-Kheir AA, Mowafi S, Abou Taleb M et al (2012) Preparation and characterization of keratin-polyvinyl alcohol composite film. Egypt J Chem 55:491–507CrossRef
Zurück zum Zitat Ellison CJ, Phatak A, Giles DW et al (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber break-up. Polymer 48:3306–3316CrossRef Ellison CJ, Phatak A, Giles DW et al (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber break-up. Polymer 48:3306–3316CrossRef
Zurück zum Zitat Eslahi N, Simchi A, Mehrjoo M et al (2016) Hybrid cross-linked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: tunable thermosensitivity, biodegradability and mechanical durability. RSC Adv 6:62944–62957CrossRef Eslahi N, Simchi A, Mehrjoo M et al (2016) Hybrid cross-linked hydrogels based on fibrous protein/block copolymers and layered silicate nanoparticles: tunable thermosensitivity, biodegradability and mechanical durability. RSC Adv 6:62944–62957CrossRef
Zurück zum Zitat Evans RL, Shore B (1948) Regenerated keratin. US Patent 2,434,688, 20 Jan 1948 Evans RL, Shore B (1948) Regenerated keratin. US Patent 2,434,688, 20 Jan 1948
Zurück zum Zitat Fan J, Lei TD, Li J et al (2016) High protein content keratin/poly(ethylene oxide) nanofibers crosslinked in oxygen atmosphere and its cell culture. Mater Des 104:60–67CrossRef Fan J, Lei TD, Li J et al (2016) High protein content keratin/poly(ethylene oxide) nanofibers crosslinked in oxygen atmosphere and its cell culture. Mater Des 104:60–67CrossRef
Zurück zum Zitat Formhals A (1934) Process and apparatus for preparing artificial threads. US Patent 1,975,504, 2 Oct 1934 Formhals A (1934) Process and apparatus for preparing artificial threads. US Patent 1,975,504, 2 Oct 1934
Zurück zum Zitat Fowler WE, Aebi U (1983) Preparation of single molecules and supramolecular complexes for high resolution metal shadowing. J Ultrastruct Res 83:319–334PubMedCrossRef Fowler WE, Aebi U (1983) Preparation of single molecules and supramolecular complexes for high resolution metal shadowing. J Ultrastruct Res 83:319–334PubMedCrossRef
Zurück zum Zitat Furth ME, Atala A, Van Dyke ME (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28:5068–5073PubMedCrossRef Furth ME, Atala A, Van Dyke ME (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28:5068–5073PubMedCrossRef
Zurück zum Zitat Fujii T (2012) Hair keratin film as a substitute device for human hair. J Biol Macromol 12:3–5CrossRef Fujii T (2012) Hair keratin film as a substitute device for human hair. J Biol Macromol 12:3–5CrossRef
Zurück zum Zitat Fujii T, Murai S, Ohkawa K et al (2008) Effects of human hair and nail proteins and their films on rat mast cells. J Mater Sci Mater Med 19:2335–2342PubMedCrossRef Fujii T, Murai S, Ohkawa K et al (2008) Effects of human hair and nail proteins and their films on rat mast cells. J Mater Sci Mater Med 19:2335–2342PubMedCrossRef
Zurück zum Zitat Fujii T, Ide Y (2004) Preparation of translucent and flexible human hair protein films and their properties. Biol Pharm Bull 27:1433–1436PubMedCrossRef Fujii T, Ide Y (2004) Preparation of translucent and flexible human hair protein films and their properties. Biol Pharm Bull 27:1433–1436PubMedCrossRef
Zurück zum Zitat Fujii T, Ogiwara D, Arimoto M (2004) Convenient procedures for human hair protein films and properties of alkaline phosphatase incormporated in the film. Biol Pharm Bull 27:89–93PubMedCrossRef Fujii T, Ogiwara D, Arimoto M (2004) Convenient procedures for human hair protein films and properties of alkaline phosphatase incormporated in the film. Biol Pharm Bull 27:89–93PubMedCrossRef
Zurück zum Zitat Ganesan P (2017) Natural and bio polymer curative films for wound dressing medical applications. Wound Med 18:33–40CrossRef Ganesan P (2017) Natural and bio polymer curative films for wound dressing medical applications. Wound Med 18:33–40CrossRef
Zurück zum Zitat Gao P, Liu Z, Wu X et al (2014a) Biosorption of chromium(VI) ions by deposits produced from chicken feathers after soluble keratin extraction. Clean: Soil, Air, Water 42:1558–1566 Gao P, Liu Z, Wu X et al (2014a) Biosorption of chromium(VI) ions by deposits produced from chicken feathers after soluble keratin extraction. Clean: Soil, Air, Water 42:1558–1566
Zurück zum Zitat Gao P, Li K, Liu Z et al (2014b) Feather keratin deposits as biosorbent for the removal of methylene blue from aqueous solution: equilibrium, kinetics, and thermodynamics studies. Water Air Soil Pollut 225:1946CrossRef Gao P, Li K, Liu Z et al (2014b) Feather keratin deposits as biosorbent for the removal of methylene blue from aqueous solution: equilibrium, kinetics, and thermodynamics studies. Water Air Soil Pollut 225:1946CrossRef
Zurück zum Zitat Geidobler R, Winter G (2013) Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review. Eur J Pharm Biopharm 5:214–222CrossRef Geidobler R, Winter G (2013) Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review. Eur J Pharm Biopharm 5:214–222CrossRef
Zurück zum Zitat Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloid Surf A 187–188:469–481CrossRef Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloid Surf A 187–188:469–481CrossRef
Zurück zum Zitat Gibson PW, Lee C, Ko F et al (2007) Application of nanofiber technology to nonwoven thermal insulation. J Eng Fibers Fabr 2:32–40 Gibson PW, Lee C, Ko F et al (2007) Application of nanofiber technology to nonwoven thermal insulation. J Eng Fibers Fabr 2:32–40
Zurück zum Zitat Gopal R, Kaur S, Ma Z et al (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586CrossRef Gopal R, Kaur S, Ma Z et al (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586CrossRef
Zurück zum Zitat Gupta P, Nayak KK (2015) Compatibility study of alginate/keratin blend for biopolymer development. J Appl Biomater Funct Mater 13:e332–e339PubMed Gupta P, Nayak KK (2015) Compatibility study of alginate/keratin blend for biopolymer development. J Appl Biomater Funct Mater 13:e332–e339PubMed
Zurück zum Zitat Hamasaki S, Tachibana A, Tada D et al (2008) Fabrication of highly porous keratin sponges by freeze-drying in the presence of calcium alginate beads. J Mater Sci Eng C 28:1250–1254CrossRef Hamasaki S, Tachibana A, Tada D et al (2008) Fabrication of highly porous keratin sponges by freeze-drying in the presence of calcium alginate beads. J Mater Sci Eng C 28:1250–1254CrossRef
Zurück zum Zitat Hameed N, Guo Q (2010) Blend films of natural wool and cellulose prepared from an ionic liquid. Cellulose 17:803–813CrossRef Hameed N, Guo Q (2010) Blend films of natural wool and cellulose prepared from an ionic liquid. Cellulose 17:803–813CrossRef
Zurück zum Zitat Ham TR, Lee RT, Han S et al (2016) Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules 17:225–236PubMedCrossRef Ham TR, Lee RT, Han S et al (2016) Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromolecules 17:225–236PubMedCrossRef
Zurück zum Zitat Han S, Hama TR, Haque S et al (2015) Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Acta Biomater 23:201–213PubMedPubMedCentralCrossRef Han S, Hama TR, Haque S et al (2015) Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Acta Biomater 23:201–213PubMedPubMedCentralCrossRef
Zurück zum Zitat Harris M, Brown AE (1947) Natural and synthetic protein fibers. Tex Res J 17:323–330CrossRef Harris M, Brown AE (1947) Natural and synthetic protein fibers. Tex Res J 17:323–330CrossRef
Zurück zum Zitat Heikkilä P, Sipilä A, Peltola M et al (2007) Electrospun PA-66 coating on textile surfaces. Tex Res J 77:864–870CrossRef Heikkilä P, Sipilä A, Peltola M et al (2007) Electrospun PA-66 coating on textile surfaces. Tex Res J 77:864–870CrossRef
Zurück zum Zitat He M, Zhang B, Dou Y et al (2017) Blend modification of feather keratin-based films using sodium alginate. J Appl Polym Sci 2017:44680–44688 He M, Zhang B, Dou Y et al (2017) Blend modification of feather keratin-based films using sodium alginate. J Appl Polym Sci 2017:44680–44688
Zurück zum Zitat Hengchang M, Zhikang B, Guobin H et al (2013) Nanoparticulate palladium catalyst stabilized by supported on feather keratin for Suzuki coupling reaction. Chin J Catal 34:578–584CrossRef Hengchang M, Zhikang B, Guobin H et al (2013) Nanoparticulate palladium catalyst stabilized by supported on feather keratin for Suzuki coupling reaction. Chin J Catal 34:578–584CrossRef
Zurück zum Zitat Hermanson GT (2013a) Chapter 3—the reactions of bioconjugation. In: Audet J (ed) Bioconjugate techniques, 3rd edn. Elsevier, Inc., pp 229–258 Hermanson GT (2013a) Chapter 3—the reactions of bioconjugation. In: Audet J (ed) Bioconjugate techniques, 3rd edn. Elsevier, Inc., pp 229–258
Zurück zum Zitat Hermanson GT (2013b) Chapter 24—bioconjugation in the study of protein interactions. In: Audet J (ed) Bioconjugate techniques, 3rd edn. Elsevier, Inc., pp 989–1016 Hermanson GT (2013b) Chapter 24—bioconjugation in the study of protein interactions. In: Audet J (ed) Bioconjugate techniques, 3rd edn. Elsevier, Inc., pp 989–1016
Zurück zum Zitat Hill P, Brantley H, Van Dyke M (2010) Some properties of keratin biomaterials: kerateines. Biomaterials 31:585–593PubMedCrossRef Hill P, Brantley H, Van Dyke M (2010) Some properties of keratin biomaterials: kerateines. Biomaterials 31:585–593PubMedCrossRef
Zurück zum Zitat Hirao Y, Ohkawa K, Yamamoto H et al (2005) A novel human hair protein fiber prepared by watery hybridization spinning. Macromol Mater Eng 290:165–171CrossRef Hirao Y, Ohkawa K, Yamamoto H et al (2005) A novel human hair protein fiber prepared by watery hybridization spinning. Macromol Mater Eng 290:165–171CrossRef
Zurück zum Zitat Homonoff E (2008) Nanofibrillated fibers: opening new markets to nano-fibre usage. Int Fibers J 23:22–24 Homonoff E (2008) Nanofibrillated fibers: opening new markets to nano-fibre usage. Int Fibers J 23:22–24
Zurück zum Zitat Idris A, Vijayaraghavan R, Rana UA et al (2013) Dissolution of feather keratin in ionic liquids. Green Chem 15:525–534CrossRef Idris A, Vijayaraghavan R, Rana UA et al (2013) Dissolution of feather keratin in ionic liquids. Green Chem 15:525–534CrossRef
Zurück zum Zitat Iridag Y, Kazanci M (2006) Preparation and characterization of Bombyx mori silk fibroin and wool keratin. J Appl Polym Sci 100:4260–4264CrossRef Iridag Y, Kazanci M (2006) Preparation and characterization of Bombyx mori silk fibroin and wool keratin. J Appl Polym Sci 100:4260–4264CrossRef
Zurück zum Zitat Kakkar P, Madhan B (2016) Fabrication of keratin-silica hydrogel for biomedical applications. J Mater Sci Eng C 66:178–184CrossRef Kakkar P, Madhan B (2016) Fabrication of keratin-silica hydrogel for biomedical applications. J Mater Sci Eng C 66:178–184CrossRef
Zurück zum Zitat Kar P, Misra M (2004) Use of keratin fiber for separation of heavy metals from water. J Chem Technol Biotechnol 79:1313–1319CrossRef Kar P, Misra M (2004) Use of keratin fiber for separation of heavy metals from water. J Chem Technol Biotechnol 79:1313–1319CrossRef
Zurück zum Zitat Katoh K, Shibayama M, Tanabe T et al (2004) Preparation and properties of keratin–poly(vinyl alcohol) blend fiber. J Appl Polym Sci 91:756–762CrossRef Katoh K, Shibayama M, Tanabe T et al (2004) Preparation and properties of keratin–poly(vinyl alcohol) blend fiber. J Appl Polym Sci 91:756–762CrossRef
Zurück zum Zitat Khosa MA, Ullah A (2014) In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. J Hazard Mater 278:360–371PubMedCrossRef Khosa MA, Ullah A (2014) In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. J Hazard Mater 278:360–371PubMedCrossRef
Zurück zum Zitat Ki CS, Gang EH, Um IC et al (2007) Nanofibous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Membr Sci 302:20–26CrossRef Ki CS, Gang EH, Um IC et al (2007) Nanofibous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Membr Sci 302:20–26CrossRef
Zurück zum Zitat Kilic A, Oruc F, Demir A (2008) Effects of polarity on electrospinning process. Tex Res J 78:532–539CrossRef Kilic A, Oruc F, Demir A (2008) Effects of polarity on electrospinning process. Tex Res J 78:532–539CrossRef
Zurück zum Zitat Kim BS, Park KE, Park WH et al (2013) Fabrication of nanofibrous scaffold using a PLA and hagfish thread keratin composite; its effect on cell adherence, growth, and osteoblast differentiation. Biomed Mater 8:1–9 Kim BS, Park KE, Park WH et al (2013) Fabrication of nanofibrous scaffold using a PLA and hagfish thread keratin composite; its effect on cell adherence, growth, and osteoblast differentiation. Biomed Mater 8:1–9
Zurück zum Zitat Kim G, Cho YS, Kim WD (2006) Stability analysis for multi-jets electrospin-ning process modified with a cylindrical electrode. Eur Polym J 42:2031–2038CrossRef Kim G, Cho YS, Kim WD (2006) Stability analysis for multi-jets electrospin-ning process modified with a cylindrical electrode. Eur Polym J 42:2031–2038CrossRef
Zurück zum Zitat Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B 14:61–86CrossRef Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B 14:61–86CrossRef
Zurück zum Zitat Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel. Adv Mater 16:1151–1170CrossRef Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel. Adv Mater 16:1151–1170CrossRef
Zurück zum Zitat Li J, Li Y, Li L et al (2009) Fabrication and degradation of poly(L-lactic acid) scaffolds with wool keratin. Compos. B 40:664–667CrossRef Li J, Li Y, Li L et al (2009) Fabrication and degradation of poly(L-lactic acid) scaffolds with wool keratin. Compos. B 40:664–667CrossRef
Zurück zum Zitat Li J, Yu LH, Fan J et al (2013) Fabrication of three-dimensional porous keratin/PEO biological scaffolds. Adv Mater Res 821:1035–1038 Li J, Yu LH, Fan J et al (2013) Fabrication of three-dimensional porous keratin/PEO biological scaffolds. Adv Mater Res 821:1035–1038
Zurück zum Zitat Li L, Frey MW, Green TB (2006) Modification of air filter media with nylon-6 nanofibers. J Eng Fibers Fabr 1:1–24 Li L, Frey MW, Green TB (2006) Modification of air filter media with nylon-6 nanofibers. J Eng Fibers Fabr 1:1–24
Zurück zum Zitat Li Q, Zhu L, Liu R et al (2012) Biological stimuli responsive drug carriers based on keratin for triggerable drug delivery. J Mater Chem 22:19964–19973CrossRef Li Q, Zhu L, Liu R et al (2012) Biological stimuli responsive drug carriers based on keratin for triggerable drug delivery. J Mater Chem 22:19964–19973CrossRef
Zurück zum Zitat Li S, Yang XH (2014) Fabrication and characterization of electrospun wool keratin/poly(vinyl alcohol) blend nanofibers. Adv Mater Sci Eng 2014:1–7 Li S, Yang XH (2014) Fabrication and characterization of electrospun wool keratin/poly(vinyl alcohol) blend nanofibers. Adv Mater Sci Eng 2014:1–7
Zurück zum Zitat Li W, Laurencin CT, Caterson EJ et al (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res, Part B 60:613–621CrossRef Li W, Laurencin CT, Caterson EJ et al (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res, Part B 60:613–621CrossRef
Zurück zum Zitat Li Y, Wang Y, Ye J et al (2016) Fabrication of poly(ε-caprolactone)/keratin nanofibrous mats as a potential scaffold for vascular tissue engineering. J Mater Sci Eng C 68:177–183CrossRef Li Y, Wang Y, Ye J et al (2016) Fabrication of poly(ε-caprolactone)/keratin nanofibrous mats as a potential scaffold for vascular tissue engineering. J Mater Sci Eng C 68:177–183CrossRef
Zurück zum Zitat Liu Y, Yu X, Li J et al (2015) Fabrication and properties of high-content keratin/poly(ethylene oxide) blend nanofibers using two-step cross-linking process. J Nanomater 2015:1–7 Liu Y, Yu X, Li J et al (2015) Fabrication and properties of high-content keratin/poly(ethylene oxide) blend nanofibers using two-step cross-linking process. J Nanomater 2015:1–7
Zurück zum Zitat Ma B, Qiao X, Hou X et al (2016) Pure keratin membrane and fibers from chicken feather. Int J Biol Macromol 89:614–621CrossRefPubMed Ma B, Qiao X, Hou X et al (2016) Pure keratin membrane and fibers from chicken feather. Int J Biol Macromol 89:614–621CrossRefPubMed
Zurück zum Zitat Maclaren JA, Milligan B (1981) Wool science: the chemical reactivity of the wool fibre. Science Press, Marrickville, Australia, pp 109–127 Maclaren JA, Milligan B (1981) Wool science: the chemical reactivity of the wool fibre. Science Press, Marrickville, Australia, pp 109–127
Zurück zum Zitat Manrique-Juárez MD, Martínez-Hernández AL, Olea-Mejía OF et al (2013) Polyurethane-keratin membranes: structural changes by isocyanate and pH, and the repercussion on Cr(VI) removal. Int J Polym Sci 2013:1–12CrossRef Manrique-Juárez MD, Martínez-Hernández AL, Olea-Mejía OF et al (2013) Polyurethane-keratin membranes: structural changes by isocyanate and pH, and the repercussion on Cr(VI) removal. Int J Polym Sci 2013:1–12CrossRef
Zurück zum Zitat Martelli SM, Borges Laurindo J (2012) Chicken feather keratin films plasticized with polyethylene glycol. Int J Polym Mater 61:17–29CrossRef Martelli SM, Borges Laurindo J (2012) Chicken feather keratin films plasticized with polyethylene glycol. Int J Polym Mater 61:17–29CrossRef
Zurück zum Zitat Martelli SM, Moore G, Paes SS et al (2006a) Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT 39:292–301CrossRef Martelli SM, Moore G, Paes SS et al (2006a) Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT 39:292–301CrossRef
Zurück zum Zitat Martelli SM, Plácido Moore GR, Borges Laurindo J (2006b) Mechanical properties, water vapor permeability and water affinity of feather keratin films plasticized with sorbitol. J Polym Environ 14:215–222CrossRef Martelli SM, Plácido Moore GR, Borges Laurindo J (2006b) Mechanical properties, water vapor permeability and water affinity of feather keratin films plasticized with sorbitol. J Polym Environ 14:215–222CrossRef
Zurück zum Zitat McCurry J (1996) Fibres, yarns and fabrics. Tex World 28 McCurry J (1996) Fibres, yarns and fabrics. Tex World 28
Zurück zum Zitat Montefusco F (2005) The use of nonwovens in air filtration. Filtr Sep 42:30–31CrossRef Montefusco F (2005) The use of nonwovens in air filtration. Filtr Sep 42:30–31CrossRef
Zurück zum Zitat Na Ayutthaya SI, Tanpichai S, Sangkhun W et al (2016) Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber. Int J Biol Macromol 85:585–595CrossRef Na Ayutthaya SI, Tanpichai S, Sangkhun W et al (2016) Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber. Int J Biol Macromol 85:585–595CrossRef
Zurück zum Zitat Na Ayutthaya SI, Tanpichai S, Wootthikanokkhan J (2015) Keratin extracted from chicken feather waste: extraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns. J Polym Environ 23:506–516CrossRef Na Ayutthaya SI, Tanpichai S, Wootthikanokkhan J (2015) Keratin extracted from chicken feather waste: extraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns. J Polym Environ 23:506–516CrossRef
Zurück zum Zitat Na Ayutthaya SI, Wootthikanokkhan J (2013) Extraction of keratin from chicken feather and electrospinning of the keratin/PLA blends. Adv Mater Res 747:711–714CrossRef Na Ayutthaya SI, Wootthikanokkhan J (2013) Extraction of keratin from chicken feather and electrospinning of the keratin/PLA blends. Adv Mater Res 747:711–714CrossRef
Zurück zum Zitat Nakata R, Osumi Y, Miyagawa S et al (2015) Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability. J Biosci Bioeng 120:111–116PubMedCrossRef Nakata R, Osumi Y, Miyagawa S et al (2015) Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability. J Biosci Bioeng 120:111–116PubMedCrossRef
Zurück zum Zitat Nakata R, Tachibana A, Tanabe T (2014) Preparation of keratin hydrogel/hydroxyapatite composite and its evaluation as a controlled drug release carrier. J Mater Sci Eng C 41:59–64CrossRef Nakata R, Tachibana A, Tanabe T (2014) Preparation of keratin hydrogel/hydroxyapatite composite and its evaluation as a controlled drug release carrier. J Mater Sci Eng C 41:59–64CrossRef
Zurück zum Zitat Nayak KK, Gupta P (2017) Study of the keratin-based therapeutic dermal patches for the delivery of bioactive molecules for wound treatment. J Mater Sci Eng C 77:1088–1097CrossRef Nayak KK, Gupta P (2017) Study of the keratin-based therapeutic dermal patches for the delivery of bioactive molecules for wound treatment. J Mater Sci Eng C 77:1088–1097CrossRef
Zurück zum Zitat Obach RS, Kalgutkar AS (2018) 1.15–Reactive electrophiles and metabolic activation. In: McQuieen CA (ed) Reference module in biomedical sciences, from Comprehensive Toxicology, 3rd edn. Elsevier, Inc., pp 295–331 Obach RS, Kalgutkar AS (2018) 1.15–Reactive electrophiles and metabolic activation. In: McQuieen CA (ed) Reference module in biomedical sciences, from Comprehensive Toxicology, 3rd edn. Elsevier, Inc., pp 295–331
Zurück zum Zitat Ozaki Y, Takagi Y, Mori H et al (2014) Porous hydrogel of wool keratin prepared by a novel method: an extraction with guanidine/2-mercaptoethanol solution followed by a dialysis. J Mater Sci Eng C 42:146–154CrossRef Ozaki Y, Takagi Y, Mori H et al (2014) Porous hydrogel of wool keratin prepared by a novel method: an extraction with guanidine/2-mercaptoethanol solution followed by a dialysis. J Mater Sci Eng C 42:146–154CrossRef
Zurück zum Zitat Pace LA, Plate JF, Smith TL et al (2013) The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model. Biomaterials 34:5907–5914PubMedCrossRef Pace LA, Plate JF, Smith TL et al (2013) The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model. Biomaterials 34:5907–5914PubMedCrossRef
Zurück zum Zitat Patrucco A, Cristofaro F, Simionati M et al (2016) Wool fibril sponges with perspective biomedical applications. J Mater Sci Eng C 61:42–50CrossRef Patrucco A, Cristofaro F, Simionati M et al (2016) Wool fibril sponges with perspective biomedical applications. J Mater Sci Eng C 61:42–50CrossRef
Zurück zum Zitat Park M, Kima BS, Shin HK et al (2013) Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation. J Mater Sci Eng C 33:5051–5057CrossRef Park M, Kima BS, Shin HK et al (2013) Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation. J Mater Sci Eng C 33:5051–5057CrossRef
Zurück zum Zitat Park M, Shin HK, Panthi G et al (2015) Novel preparation and characterization of human hair-based nanofibers using electrospinning process. Int J Biol Macromol 76:45–48PubMedCrossRef Park M, Shin HK, Panthi G et al (2015) Novel preparation and characterization of human hair-based nanofibers using electrospinning process. Int J Biol Macromol 76:45–48PubMedCrossRef
Zurück zum Zitat Pedram Rad Z, Tavanai H, Moradi AR (2012) Production of feather keratin nanopowder through electrospraying. J Aerosol Sci 51:49–56CrossRef Pedram Rad Z, Tavanai H, Moradi AR (2012) Production of feather keratin nanopowder through electrospraying. J Aerosol Sci 51:49–56CrossRef
Zurück zum Zitat Perez MA, Swan D, Louks JW (2000) Microfibers and method of making. US Patent 6,110,588, 29 Aug 2000 Perez MA, Swan D, Louks JW (2000) Microfibers and method of making. US Patent 6,110,588, 29 Aug 2000
Zurück zum Zitat Peyton CC, Keys T, Tomblyn S et al (2012) Halofuginone infused keratin hydrogel attenuates adhesions in a rodent cecal abrasion model. J Surg Res 178:545–552PubMedCrossRef Peyton CC, Keys T, Tomblyn S et al (2012) Halofuginone infused keratin hydrogel attenuates adhesions in a rodent cecal abrasion model. J Surg Res 178:545–552PubMedCrossRef
Zurück zum Zitat Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211PubMedCrossRef Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211PubMedCrossRef
Zurück zum Zitat Placido Moore GR, Martelli SM, Gandolfo C et al (2006) Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocolloids 20:975–982CrossRef Placido Moore GR, Martelli SM, Gandolfo C et al (2006) Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocolloids 20:975–982CrossRef
Zurück zum Zitat Placone JK, Navarro J, Laslo GW et al (2017) Development and characterization of a 3D printed, keratin-based hydrogel. Ann Biomed Eng 45:237–248PubMedCrossRef Placone JK, Navarro J, Laslo GW et al (2017) Development and characterization of a 3D printed, keratin-based hydrogel. Ann Biomed Eng 45:237–248PubMedCrossRef
Zurück zum Zitat Poole AJ, Church JS (2015) The effects of physical and chemical treatments on Na2S produced feather keratin films. Int J Biol Macromol 73:99–108PubMedCrossRef Poole AJ, Church JS (2015) The effects of physical and chemical treatments on Na2S produced feather keratin films. Int J Biol Macromol 73:99–108PubMedCrossRef
Zurück zum Zitat Poole AJ, Church JS, Huson MG (2008) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10:1–8CrossRef Poole AJ, Church JS, Huson MG (2008) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10:1–8CrossRef
Zurück zum Zitat Posati T, Sotgiu G, Varchi G et al (2016) Developing keratin sponges with tunable morphologies and controlled antioxidant properties induced by doping with polydopamine (PDA) nanoparticles. Mater Des 110:475–484CrossRef Posati T, Sotgiu G, Varchi G et al (2016) Developing keratin sponges with tunable morphologies and controlled antioxidant properties induced by doping with polydopamine (PDA) nanoparticles. Mater Des 110:475–484CrossRef
Zurück zum Zitat Pourdeyhimi B, Fedorova NV, Sharp SR (2006) High strength, durable micro & nano-fiber fabrics produced by fibrillating biocomponent islands in the sea fibers. US Patent 2006/0292355, 28 Dec 2006 Pourdeyhimi B, Fedorova NV, Sharp SR (2006) High strength, durable micro & nano-fiber fabrics produced by fibrillating biocomponent islands in the sea fibers. US Patent 2006/0292355, 28 Dec 2006
Zurück zum Zitat Puglia D, Ceccolini R, Fortunati et al (2015) Effect of processing techniques on the 3D microstructure of poly (L-lactic acid) scaffolds reinforced with wool keratin from different sources. J Appl Polym Sci 132:42890CrossRef Puglia D, Ceccolini R, Fortunati et al (2015) Effect of processing techniques on the 3D microstructure of poly (L-lactic acid) scaffolds reinforced with wool keratin from different sources. J Appl Polym Sci 132:42890CrossRef
Zurück zum Zitat Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102:1285–1290CrossRef Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102:1285–1290CrossRef
Zurück zum Zitat Ramakrishnan N, Sharma S, Gupta A et al (2018) Keratin based bioplastic film from chicken feathers and its characterization. Int J Biol Macromol 111:352–358CrossRefPubMed Ramakrishnan N, Sharma S, Gupta A et al (2018) Keratin based bioplastic film from chicken feathers and its characterization. Int J Biol Macromol 111:352–358CrossRefPubMed
Zurück zum Zitat Ramakrishna S, Fujihara K, Teo WE et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50CrossRef Ramakrishna S, Fujihara K, Teo WE et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50CrossRef
Zurück zum Zitat Reddy N, Jiang Q, Jin E et al (2013) Bio-thermoplastics from grafted chicken feathers for potential biomedical applications. Colloids Surf B 100:51–58CrossRef Reddy N, Jiang Q, Jin E et al (2013) Bio-thermoplastics from grafted chicken feathers for potential biomedical applications. Colloids Surf B 100:51–58CrossRef
Zurück zum Zitat Reichl S (2009) Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 30:6854–6866PubMedCrossRef Reichl S (2009) Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 30:6854–6866PubMedCrossRef
Zurück zum Zitat Reichl S, Borrelli M, Geerling G (2011) Keratin films for ocular surface reconstruction. Biomaterials 32:3375–3386PubMedCrossRef Reichl S, Borrelli M, Geerling G (2011) Keratin films for ocular surface reconstruction. Biomaterials 32:3375–3386PubMedCrossRef
Zurück zum Zitat Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425CrossRef Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425CrossRef
Zurück zum Zitat Richter JR, de Guzman RC, Greengauz-Roberts OK et al (2012) Structure–property relationships of meta-kerateine biomaterials derived from human hair. Acta Biomater 8:274–281PubMedCrossRef Richter JR, de Guzman RC, Greengauz-Roberts OK et al (2012) Structure–property relationships of meta-kerateine biomaterials derived from human hair. Acta Biomater 8:274–281PubMedCrossRef
Zurück zum Zitat Salazar NA, Alvarez C, Orrego CE (2018) Optimization of freezing parameters for freeze-drying mango (Mangifera indica L.) slices. Drying Technol 36:192–204CrossRef Salazar NA, Alvarez C, Orrego CE (2018) Optimization of freezing parameters for freeze-drying mango (Mangifera indica L.) slices. Drying Technol 36:192–204CrossRef
Zurück zum Zitat Sanchez Ramirez DO, Carletto RA, Tonetti C et al (2017) Wool keratin film plasticized by citric acid for food packaging. Food Packag Shelf Life 12:100–106CrossRef Sanchez Ramirez DO, Carletto RA, Tonetti C et al (2017) Wool keratin film plasticized by citric acid for food packaging. Food Packag Shelf Life 12:100–106CrossRef
Zurück zum Zitat Saucedo-Rivalcoba V, Martínez-Hernández AL, Martínez-Barrera G et al (2011a) Chicken feathers keratin)/polyurethane membranes. Appl Phys A Mater Sci Process 104:219–228CrossRef Saucedo-Rivalcoba V, Martínez-Hernández AL, Martínez-Barrera G et al (2011a) Chicken feathers keratin)/polyurethane membranes. Appl Phys A Mater Sci Process 104:219–228CrossRef
Zurück zum Zitat Saucedo-Rivalcoba V, Martínez-Hernández AL, Martínez-Barrera G et al (2011b) Removal of hexavalent chromium from water by polyurethane–keratin hybrid membranes. Water Air Soil Pollut 218:557–571CrossRef Saucedo-Rivalcoba V, Martínez-Hernández AL, Martínez-Barrera G et al (2011b) Removal of hexavalent chromium from water by polyurethane–keratin hybrid membranes. Water Air Soil Pollut 218:557–571CrossRef
Zurück zum Zitat Schmidt FW, Waters RM, Gassner G (1998) Chemical engineering news, p 23 Schmidt FW, Waters RM, Gassner G (1998) Chemical engineering news, p 23
Zurück zum Zitat Schrooyen PMM, Dijkstra PJ, Oberthür RC et al (2000) Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J Agric Food Chem 48:4326–4334CrossRefPubMed Schrooyen PMM, Dijkstra PJ, Oberthür RC et al (2000) Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J Agric Food Chem 48:4326–4334CrossRefPubMed
Zurück zum Zitat Schrooyen PMM, Dijkstra PJ, Oberthür RC et al (2001) Partially carboxymethylated feather keratins. 2. Thermal and mechanical properties of films. J Agric Food Chem 49:221–230PubMedCrossRef Schrooyen PMM, Dijkstra PJ, Oberthür RC et al (2001) Partially carboxymethylated feather keratins. 2. Thermal and mechanical properties of films. J Agric Food Chem 49:221–230PubMedCrossRef
Zurück zum Zitat Sekimoto Y, Okiharu T, Nakajima H et al (2013) Removal of Pb(II) from water using keratin colloidal solution obtained from wool. Environ Sci Pollut Res 20:6531–6538CrossRef Sekimoto Y, Okiharu T, Nakajima H et al (2013) Removal of Pb(II) from water using keratin colloidal solution obtained from wool. Environ Sci Pollut Res 20:6531–6538CrossRef
Zurück zum Zitat Sharma S, Gupta A, Kumar A et al (2018) An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Techn Environ Policy 1–11 Sharma S, Gupta A, Kumar A et al (2018) An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Techn Environ Policy 1–11
Zurück zum Zitat Shen D, Wang X, Zhang L et al (2011) The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair. Biomaterials 32:9290–9299PubMedCrossRef Shen D, Wang X, Zhang L et al (2011) The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair. Biomaterials 32:9290–9299PubMedCrossRef
Zurück zum Zitat Shin C, Chase GG, Reneker DH (2005) The effect of nanofibers on liquid–liquid coalescence filter performance. AIChE J 51:3109–3113CrossRef Shin C, Chase GG, Reneker DH (2005) The effect of nanofibers on liquid–liquid coalescence filter performance. AIChE J 51:3109–3113CrossRef
Zurück zum Zitat Shin YM, Hohman MM, Brenner MP et al (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42:9955–9967CrossRef Shin YM, Hohman MM, Brenner MP et al (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42:9955–9967CrossRef
Zurück zum Zitat Siemann U (2005) Solvent cast technology—a versatile tool for thin film production. Prog Colloid Polym Sci 130:1–14 Siemann U (2005) Solvent cast technology—a versatile tool for thin film production. Prog Colloid Polym Sci 130:1–14
Zurück zum Zitat Siller-Jackson AJ, Mark Van Dyke ME, Timmons SF et al (2003) Keratin-based powder and hydrogel for pharmaceutical applications. US Patent 6,544,548, 8 Apr 2003 Siller-Jackson AJ, Mark Van Dyke ME, Timmons SF et al (2003) Keratin-based powder and hydrogel for pharmaceutical applications. US Patent 6,544,548, 8 Apr 2003
Zurück zum Zitat Sill TJ, Von Recum HA (2008) Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006PubMedCrossRef Sill TJ, Von Recum HA (2008) Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006PubMedCrossRef
Zurück zum Zitat Singh R, Lin YT, Chaung WL et al (2017) A new biodegradable gate dielectric material based on keratin protein for organic thin film transistors. Org Electron 44:198–209CrossRef Singh R, Lin YT, Chaung WL et al (2017) A new biodegradable gate dielectric material based on keratin protein for organic thin film transistors. Org Electron 44:198–209CrossRef
Zurück zum Zitat Singh R, Sarker B, Silva R et al (2016) Evaluation of hydrogel matrices for vessel bioplotting: vascular cell growth and viability. J Biomed Mater Res, Part A 104A:577–585CrossRef Singh R, Sarker B, Silva R et al (2016) Evaluation of hydrogel matrices for vessel bioplotting: vascular cell growth and viability. J Biomed Mater Res, Part A 104A:577–585CrossRef
Zurück zum Zitat Sionkowska A, Skopinska-Wiśniewska J, Kozłowska J et al (2011) Photochemical behaviour of hydrolysed keratin. Int J Cosmet Sci 33:503–508PubMedCrossRef Sionkowska A, Skopinska-Wiśniewska J, Kozłowska J et al (2011) Photochemical behaviour of hydrolysed keratin. Int J Cosmet Sci 33:503–508PubMedCrossRef
Zurück zum Zitat Son WK, Youk JH, Lee TS et al (2004) The effects of solution proper-ties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 45:2959–2966CrossRef Son WK, Youk JH, Lee TS et al (2004) The effects of solution proper-ties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 45:2959–2966CrossRef
Zurück zum Zitat Srinivasan B, Kumar R, Shanmugam K et al (2010) Porous keratin scaffold–promising biomaterial for tissue engineering and drug delivery. J Biomed Mater Res, Part B 92B:5–12CrossRef Srinivasan B, Kumar R, Shanmugam K et al (2010) Porous keratin scaffold–promising biomaterial for tissue engineering and drug delivery. J Biomed Mater Res, Part B 92B:5–12CrossRef
Zurück zum Zitat Subbiah T, Bhat GS, Tock RW et al (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569CrossRef Subbiah T, Bhat GS, Tock RW et al (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569CrossRef
Zurück zum Zitat Tachibana A, Furuta Y, Takeshima H et al (2002) Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J Biotechnol 93:165–170PubMedCrossRef Tachibana A, Furuta Y, Takeshima H et al (2002) Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J Biotechnol 93:165–170PubMedCrossRef
Zurück zum Zitat Tachibana A, Kaneko S, Tanabe T et al (2005) Rapid fabrication of keratin–hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 26:297–302PubMedCrossRef Tachibana A, Kaneko S, Tanabe T et al (2005) Rapid fabrication of keratin–hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 26:297–302PubMedCrossRef
Zurück zum Zitat Tachibana A, Nishikawa Y, Nishino M et al (2006) Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation. J Biosci Bioeng 102:425–429PubMedCrossRef Tachibana A, Nishikawa Y, Nishino M et al (2006) Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation. J Biosci Bioeng 102:425–429PubMedCrossRef
Zurück zum Zitat Taddei P, Monti P, Freddi G et al (2003) Binding of Co(II) and Cu(II) cations to chemically modified wool fibres: an IR investigation. J Mol Struct 650:105–113CrossRef Taddei P, Monti P, Freddi G et al (2003) Binding of Co(II) and Cu(II) cations to chemically modified wool fibres: an IR investigation. J Mol Struct 650:105–113CrossRef
Zurück zum Zitat Tanabe T, Okitsu N, Tachibana A et al (2002) Preparation and characterization of keratin–chitosan composite film. Biomaterials 23:817–825PubMedCrossRef Tanabe T, Okitsu N, Tachibana A et al (2002) Preparation and characterization of keratin–chitosan composite film. Biomaterials 23:817–825PubMedCrossRef
Zurück zum Zitat Tanabe T, Okitsu N, Yamauchi K (2004) Fabrication and characterization of chemically crosslinked keratin films. J Mater Sci Eng C 24:441–446CrossRef Tanabe T, Okitsu N, Yamauchi K (2004) Fabrication and characterization of chemically crosslinked keratin films. J Mater Sci Eng C 24:441–446CrossRef
Zurück zum Zitat Theron SA, Yarin AL, Zussman E et al (2005) Multiple jets in electrospinning: experiment and modelling. Polymer 46:2889–2899CrossRef Theron SA, Yarin AL, Zussman E et al (2005) Multiple jets in electrospinning: experiment and modelling. Polymer 46:2889–2899CrossRef
Zurück zum Zitat Theron SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:2017–2030CrossRef Theron SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:2017–2030CrossRef
Zurück zum Zitat Thonpho A, Songeon W, Srihanam P (2016) Effect of cross-linked agents on keratin films property. Int J GEOMATE 11:2866–2869 Thonpho A, Songeon W, Srihanam P (2016) Effect of cross-linked agents on keratin films property. Int J GEOMATE 11:2866–2869
Zurück zum Zitat Tomaselli S, Sanchez Ramirez DO, Carletto RA et al (2016) Electrospun lipid binding proteins composite nanofibers with antibacterial properties. Macromol Biosci 2016:1–6 Tomaselli S, Sanchez Ramirez DO, Carletto RA et al (2016) Electrospun lipid binding proteins composite nanofibers with antibacterial properties. Macromol Biosci 2016:1–6
Zurück zum Zitat Tomaszewski W, Szadkowski M (2005) Investigation of electrospinning with the use of a multi-jet electrospinning head. Fibres Text East Eur 52:22–26 Tomaszewski W, Szadkowski M (2005) Investigation of electrospinning with the use of a multi-jet electrospinning head. Fibres Text East Eur 52:22–26
Zurück zum Zitat Tonin C, Aluigi A, Vineis C et al (2007) Thermal and structural characterization of poly(ethylene-oxide)/keratin blend films. J Therm Anal Calorim 89:601–608CrossRef Tonin C, Aluigi A, Vineis C et al (2007) Thermal and structural characterization of poly(ethylene-oxide)/keratin blend films. J Therm Anal Calorim 89:601–608CrossRef
Zurück zum Zitat Tsai PP, Schreuder-Gibson H, Gibson P (2002) Different electrostatic methods for making electret filters. J Electrost 54:333–341CrossRef Tsai PP, Schreuder-Gibson H, Gibson P (2002) Different electrostatic methods for making electret filters. J Electrost 54:333–341CrossRef
Zurück zum Zitat Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol B 23:877–894CrossRef Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol B 23:877–894CrossRef
Zurück zum Zitat Tu H, Yu W, Duan L (2016) Structural studies and macro-performances of hydroxyapatite-reinforced keratin thin films for biological applications. J Mater Sci 51:9573–9588CrossRef Tu H, Yu W, Duan L (2016) Structural studies and macro-performances of hydroxyapatite-reinforced keratin thin films for biological applications. J Mater Sci 51:9573–9588CrossRef
Zurück zum Zitat Varabhas JS, Chase GG, Reneker DH (2008) Electrospun nanofibers froma porous hollow tube. Polymer 49:4226–4229CrossRef Varabhas JS, Chase GG, Reneker DH (2008) Electrospun nanofibers froma porous hollow tube. Polymer 49:4226–4229CrossRef
Zurück zum Zitat Vasconcelos A, Cavaco-Paulo A (2013) The use of keratin in biomedical applications. Curr Drug Targets 14:612–619PubMedCrossRef Vasconcelos A, Cavaco-Paulo A (2013) The use of keratin in biomedical applications. Curr Drug Targets 14:612–619PubMedCrossRef
Zurück zum Zitat Vasconcelos A, Freddi G, Cavaco-Paulo A (2008) Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 9:1299–1305PubMedCrossRef Vasconcelos A, Freddi G, Cavaco-Paulo A (2008) Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 9:1299–1305PubMedCrossRef
Zurück zum Zitat Varesano A, Aluigi A, Vineis C et al (2008) Study on the shear viscosity behavior of keratin/PEO blends for nanofibre electrospinning. J Polym Sci Part B Polym Phy 46:1193–1201CrossRef Varesano A, Aluigi A, Vineis C et al (2008) Study on the shear viscosity behavior of keratin/PEO blends for nanofibre electrospinning. J Polym Sci Part B Polym Phy 46:1193–1201CrossRef
Zurück zum Zitat Varesano A, Carletto RA, Mazzuchetti G (2009) Experimental investigations on the multi-jet electrospinning process. J Mater Process Technol 209:5178–5185CrossRef Varesano A, Carletto RA, Mazzuchetti G (2009) Experimental investigations on the multi-jet electrospinning process. J Mater Process Technol 209:5178–5185CrossRef
Zurück zum Zitat Varesano A, Vineis C, Tonetti C et al (2014) Chemical and physical modifications of electrospun keratin nanofibers induced by heating treatments. J Appl Polym Sci 2014:1–7 Varesano A, Vineis C, Tonetti C et al (2014) Chemical and physical modifications of electrospun keratin nanofibers induced by heating treatments. J Appl Polym Sci 2014:1–7
Zurück zum Zitat Varesano A, Vineis C, Tonetti C et al (2015) Multifunctional hybrid nanocomposite nanofibers produced by colloid electrospinning from water solutions. Curr Nanosci 11:41–48CrossRef Varesano A, Vineis C, Tonetti C et al (2015) Multifunctional hybrid nanocomposite nanofibers produced by colloid electrospinning from water solutions. Curr Nanosci 11:41–48CrossRef
Zurück zum Zitat Verma V, Verma P, Ray P et al (2008) Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater 3:1–12CrossRef Verma V, Verma P, Ray P et al (2008) Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater 3:1–12CrossRef
Zurück zum Zitat Wang J, Hao S, Luo T et al (2016) Development of feather keratin nanoparticles and investigation of their hemostatic efficacy. J Mater Sci Eng C 68:768–773CrossRef Wang J, Hao S, Luo T et al (2016) Development of feather keratin nanoparticles and investigation of their hemostatic efficacy. J Mater Sci Eng C 68:768–773CrossRef
Zurück zum Zitat Wang J, Hao S, Luo T et al (2017) Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloids Surf B 149:341–350CrossRef Wang J, Hao S, Luo T et al (2017) Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloids Surf B 149:341–350CrossRef
Zurück zum Zitat Wawro D, Stęplewski W, Wrześniewska-Tosik K (2009) Preparation of keratin-modified chitosan fibres. Fibres Text East Eur 17:37–42 Wawro D, Stęplewski W, Wrześniewska-Tosik K (2009) Preparation of keratin-modified chitosan fibres. Fibres Text East Eur 17:37–42
Zurück zum Zitat Wortmann G, Zwiener G, Sweredjiuk R et al (1999) Sorption of indoor air pollutants by sheep’s wool: formaldehyde as an example. In: Proceedings of the international wool textile organization, Florence, 1999 Wortmann G, Zwiener G, Sweredjiuk R et al (1999) Sorption of indoor air pollutants by sheep’s wool: formaldehyde as an example. In: Proceedings of the international wool textile organization, Florence, 1999
Zurück zum Zitat Wrześniewska-Tosik K, Adamiec J (2007) Biocomposites with a content of keratin from chicken feathers. Fibres Tex East Eur 15:106–112 Wrześniewska-Tosik K, Adamiec J (2007) Biocomposites with a content of keratin from chicken feathers. Fibres Tex East Eur 15:106–112
Zurück zum Zitat Wrześniewska-Tosik K, Wawro D, Ratajska M et al (2007a) Novel composites with feather keratin. Fibres Tex East Eur 15:157–162 Wrześniewska-Tosik K, Wawro D, Ratajska M et al (2007a) Novel composites with feather keratin. Fibres Tex East Eur 15:157–162
Zurück zum Zitat Wrześniewska-Tosik K, Wawro D, Stęplewski W et al (2007b) Fibrous products with keratin content. Fibres Text East Eur 15:30–35 Wrześniewska-Tosik K, Wawro D, Stęplewski W et al (2007b) Fibrous products with keratin content. Fibres Text East Eur 15:30–35
Zurück zum Zitat Xie H, Li S, Zhang S (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibres. Green Chem 7:606–608CrossRef Xie H, Li S, Zhang S (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibres. Green Chem 7:606–608CrossRef
Zurück zum Zitat Xu H, Cai S, Xu L et al (2014a) Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 30:8461–8470PubMedCrossRef Xu H, Cai S, Xu L et al (2014a) Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 30:8461–8470PubMedCrossRef
Zurück zum Zitat Xu H, Ma Z, Yang Y (2014b) Dissolution and regeneration of wool via controlled disintegration and disentanglement of highly crosslinked keratin. J Mater Sci 49:7513–7521CrossRef Xu H, Ma Z, Yang Y (2014b) Dissolution and regeneration of wool via controlled disintegration and disentanglement of highly crosslinked keratin. J Mater Sci 49:7513–7521CrossRef
Zurück zum Zitat Xu H, Yang Y (2014) Controlled de-cross-linking and disentanglement of feather keratin for fiber preparation via a novel process. ACS Sustainable Chem Eng 2:1404–1410CrossRef Xu H, Yang Y (2014) Controlled de-cross-linking and disentanglement of feather keratin for fiber preparation via a novel process. ACS Sustainable Chem Eng 2:1404–1410CrossRef
Zurück zum Zitat Xu S, Sang L, Zhang Y et al (2013) Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration. J Mater Sci Eng C 33:648–655CrossRef Xu S, Sang L, Zhang Y et al (2013) Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration. J Mater Sci Eng C 33:648–655CrossRef
Zurück zum Zitat Yanga G, Yao Y, Wang X (2018) Comparative study of kerateine and keratose based composite nanofibers for biomedical applications. J Mater Sci Eng C 83:1–8CrossRef Yanga G, Yao Y, Wang X (2018) Comparative study of kerateine and keratose based composite nanofibers for biomedical applications. J Mater Sci Eng C 83:1–8CrossRef
Zurück zum Zitat Yang Q, Dou F, Liang B et al (2005) Studies of cross-linking reaction on chitosan fiber with glyoxal. Carbohydr Polym 59:205–210CrossRef Yang Q, Dou F, Liang B et al (2005) Studies of cross-linking reaction on chitosan fiber with glyoxal. Carbohydr Polym 59:205–210CrossRef
Zurück zum Zitat Yang X, Zhang H, Yuan X et al (2009) Wool keratin: a novel building block for layer-by-layer self-assembly. J Colloid Interface Sci 336:756–760PubMedCrossRef Yang X, Zhang H, Yuan X et al (2009) Wool keratin: a novel building block for layer-by-layer self-assembly. J Colloid Interface Sci 336:756–760PubMedCrossRef
Zurück zum Zitat Yamauchi K, Yamauchi A, Kusunoki T et al (1996) Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res, Part B 31:439–444CrossRef Yamauchi K, Yamauchi A, Kusunoki T et al (1996) Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res, Part B 31:439–444CrossRef
Zurück zum Zitat Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90:4836–4846CrossRef Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90:4836–4846CrossRef
Zurück zum Zitat Yao CH, Lee CY, Huang CH et al (2017) Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. J Mater Sci Eng C 79:533–540CrossRef Yao CH, Lee CY, Huang CH et al (2017) Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. J Mater Sci Eng C 79:533–540CrossRef
Zurück zum Zitat Yoon K, Kim K, Wang X et al (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47:2434–2441CrossRef Yoon K, Kim K, Wang X et al (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47:2434–2441CrossRef
Zurück zum Zitat Yuan J, Geng J, Xing Z et al (2012) Novel wound dressing based on nano fibrous PHBV–keratin mats. J Tissue Eng Regener Med 9:1027–1035CrossRef Yuan J, Geng J, Xing Z et al (2012) Novel wound dressing based on nano fibrous PHBV–keratin mats. J Tissue Eng Regener Med 9:1027–1035CrossRef
Zurück zum Zitat Yuan J, Shen J, Kang IK (2008) Fabrication of protein-doped PLA composite nanofibrous scaffolds for tissue engineering. Polym Int 57:1188–1193CrossRef Yuan J, Shen J, Kang IK (2008) Fabrication of protein-doped PLA composite nanofibrous scaffolds for tissue engineering. Polym Int 57:1188–1193CrossRef
Zurück zum Zitat Yuan J, Xing ZC, Park SW et al (2009) Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications. Macromol Res 17:850–855CrossRef Yuan J, Xing ZC, Park SW et al (2009) Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications. Macromol Res 17:850–855CrossRef
Zurück zum Zitat Yue K, Liu Y, Byambaa B et al (2018) Visible light crosslinkable human hair keratin hydrogels. Bioeng Transl Med 3:37–48PubMedPubMedCentral Yue K, Liu Y, Byambaa B et al (2018) Visible light crosslinkable human hair keratin hydrogels. Bioeng Transl Med 3:37–48PubMedPubMedCentral
Zurück zum Zitat Yun KM, Hogan CJ Jr, Matsubayashi Y et al (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62:4751–4759CrossRef Yun KM, Hogan CJ Jr, Matsubayashi Y et al (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62:4751–4759CrossRef
Zurück zum Zitat Zhang H, Liu J (2013) Electrospun poly(lactic-coglycolic acid)/wool keratin fibrous composite scaffolds potential for bone tissue engineering applications. J Bioact Compat Polym 28:141–153CrossRef Zhang H, Liu J (2013) Electrospun poly(lactic-coglycolic acid)/wool keratin fibrous composite scaffolds potential for bone tissue engineering applications. J Bioact Compat Polym 28:141–153CrossRef
Zurück zum Zitat Zhang H, Wang J, Ma H et al (2016) Bilayered PLGA/wool keratin composite membranes support periodontal regeneration in beagle dogs. ACS Biomater Sci Eng 2:2162–2175CrossRefPubMed Zhang H, Wang J, Ma H et al (2016) Bilayered PLGA/wool keratin composite membranes support periodontal regeneration in beagle dogs. ACS Biomater Sci Eng 2:2162–2175CrossRefPubMed
Zurück zum Zitat Zhang H, Yub Y, Cuia S (2011) Multilayer fluorescent thin films based on keratin-stabilized silver nanoparticles. Colloids Surf A 384:501–506CrossRef Zhang H, Yub Y, Cuia S (2011) Multilayer fluorescent thin films based on keratin-stabilized silver nanoparticles. Colloids Surf A 384:501–506CrossRef
Zurück zum Zitat Zhang S (2002) Emerging biological materials through molecular self-assembly. Biotechnol Adv 20:321–339PubMedCrossRef Zhang S (2002) Emerging biological materials through molecular self-assembly. Biotechnol Adv 20:321–339PubMedCrossRef
Zurück zum Zitat Zhang Y, Zhu PC, Edgren D (2010) Crosslinking reaction of poly(vinyl alcohol) with glyoxal. J Polym Res 17:725–730CrossRef Zhang Y, Zhu PC, Edgren D (2010) Crosslinking reaction of poly(vinyl alcohol) with glyoxal. J Polym Res 17:725–730CrossRef
Zurück zum Zitat Zhao X, Lui YS, Chuen Choo CK et al (2015) Calcium phosphate coated keratin–PCL scaffolds for potential bone tissue regeneration. J Mater Sci Eng C 49:746–753CrossRef Zhao X, Lui YS, Chuen Choo CK et al (2015) Calcium phosphate coated keratin–PCL scaffolds for potential bone tissue regeneration. J Mater Sci Eng C 49:746–753CrossRef
Zurück zum Zitat Zhuang Y, Wu X, Cao Z et al (2013) Preparation and characterization of sponge film made from feathers. J Mater Sci Eng C 33:4732–4738CrossRef Zhuang Y, Wu X, Cao Z et al (2013) Preparation and characterization of sponge film made from feathers. J Mater Sci Eng C 33:4732–4738CrossRef
Zurück zum Zitat Zhu H, Li R, Wu X et al (2017) Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting. Eur Polym J 86:154–161CrossRef Zhu H, Li R, Wu X et al (2017) Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting. Eur Polym J 86:154–161CrossRef
Zurück zum Zitat Zhou LT, Yang G, Yang XX et al (2014) Preparation of regenerated keratin sponge from waste feathers by a simple method and its potential use for oil adsorption. Environ Sci Pollut Res 21:5730–5736CrossRef Zhou LT, Yang G, Yang XX et al (2014) Preparation of regenerated keratin sponge from waste feathers by a simple method and its potential use for oil adsorption. Environ Sci Pollut Res 21:5730–5736CrossRef
Zurück zum Zitat Zoccola M, Aluigi A, Vineis C et al (2008) Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends. Biomacromolecules 9:2819–2825PubMedCrossRef Zoccola M, Aluigi A, Vineis C et al (2008) Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends. Biomacromolecules 9:2819–2825PubMedCrossRef
Metadaten
Titel
Keratin Processing
verfasst von
Diego Omar Sanchez Ramirez
Riccardo Andrea Carletto
Francesca Truffa Giachet
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-02901-2_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.