Skip to main content
Erschienen in: Numerical Algorithms 1/2021

10.07.2020 | Original Paper

Kernel-based interpolation at approximate Fekete points

verfasst von: Toni Karvonen, Simo Särkkä, Ken’ichiro Tanaka

Erschienen in: Numerical Algorithms | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We construct approximate Fekete point sets for kernel-based interpolation by maximising the determinant of a kernel Gram matrix obtained via truncation of an orthonormal expansion of the kernel. Uniform error estimates are proved for kernel interpolants at the resulting points. If the kernel is Gaussian, we show that the approximate Fekete points in one dimension are the solution to a convex optimisation problem and that the interpolants converge with a super-exponential rate. Numerical examples are provided for the Gaussian kernel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Wendland [38, p. 192] goes as far as describing these results “almost pointless” for kernels, such as the Gaussian, that are associated with exponential rates of convergence.
 
2
Observe that in this section we begin indexing of the expansion from zero to simplify notation.
 
3
In one dimension, the convergence occurs for any points and most commonly used infinitely smooth radial kernels but in higher dimensions the Gaussian kernel is special in that it is the only known kernel for which convergence to a polynomial interpolant, of minimal degree in a certain sense, occurs for every point set.
 
4
This is the constant C in Theorem 6.1 of [24]. To derive the claimed bound, observe that this constant is given as C = 𝜖B/4 for \(B \leq \min \limits \{(b-a)/6, 1\}\) in their proof of Theorem 4.5. On p. 120, they show that 𝜖 = 1/2 if the kernel is Gaussian.
 
Literatur
1.
Zurück zum Zitat Arcangéli, R., de Silanes, M. C. L., Torrens, J. J.: An extension of a bound for functions in Sobolev spaces, with applications to (m,s)-spline interpolation and smoothing. Numer. Math. 107(2), 181–211 (2007)MathSciNetCrossRef Arcangéli, R., de Silanes, M. C. L., Torrens, J. J.: An extension of a bound for functions in Sobolev spaces, with applications to (m,s)-spline interpolation and smoothing. Numer. Math. 107(2), 181–211 (2007)MathSciNetCrossRef
2.
3.
Zurück zum Zitat Belhadji, A., Bardenet, R., Chainais, P.: Kernel quadrature with DPPs. Adv. Neural Inf. Process. Syst. 32, 12907–12917 (2019) Belhadji, A., Bardenet, R., Chainais, P.: Kernel quadrature with DPPs. Adv. Neural Inf. Process. Syst. 32, 12907–12917 (2019)
4.
Zurück zum Zitat Berlinet, A., Thomas-agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer, Berlin (2004) Berlinet, A., Thomas-agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer, Berlin (2004)
5.
Zurück zum Zitat Bos, L., De Marchi, S.: On optimal points for interpolation by univariate exponential functions. Dol. Res. Notes Approx. 4, 8–12 (2011) Bos, L., De Marchi, S.: On optimal points for interpolation by univariate exponential functions. Dol. Res. Notes Approx. 4, 8–12 (2011)
6.
Zurück zum Zitat Bos, L., De Marchi, S., Sommariva, A., Vianello, M.: Computing multivariate Fekete and Leja points by numerical linear algebra. SIAM J. Numer. Anal. 48(5), 1984–1999 (2010)MathSciNetCrossRef Bos, L., De Marchi, S., Sommariva, A., Vianello, M.: Computing multivariate Fekete and Leja points by numerical linear algebra. SIAM J. Numer. Anal. 48(5), 1984–1999 (2010)MathSciNetCrossRef
7.
Zurück zum Zitat Bos, L. P., Maier, U.: On the asymptotics of Fekete-type points for univariate radial basis interpolation. J. Approx. Theory 119(2), 252–270 (2002)MathSciNetCrossRef Bos, L. P., Maier, U.: On the asymptotics of Fekete-type points for univariate radial basis interpolation. J. Approx. Theory 119(2), 252–270 (2002)MathSciNetCrossRef
8.
Zurück zum Zitat Briani, M., Sommariva, A., Vianello, M.: Computing Fekete and Lebesgue points: simplex, square, disk. J. Comput. Appl. Math. 236(9), 2477–2486 (2012)MathSciNetCrossRef Briani, M., Sommariva, A., Vianello, M.: Computing Fekete and Lebesgue points: simplex, square, disk. J. Comput. Appl. Math. 236(9), 2477–2486 (2012)MathSciNetCrossRef
9.
Zurück zum Zitat De Marchi, S., Schaback, R.: Nonstandard kernels and their applications. Dol. Res. Notes Approx. 2, 16–43 (2009) De Marchi, S., Schaback, R.: Nonstandard kernels and their applications. Dol. Res. Notes Approx. 2, 16–43 (2009)
10.
Zurück zum Zitat De Marchi, S., Schaback, R.: Stability of kernel-based interpolation. Adv. Comput. Math. 32, 155–161 (2010)MathSciNetCrossRef De Marchi, S., Schaback, R.: Stability of kernel-based interpolation. Adv. Comput. Math. 32, 155–161 (2010)MathSciNetCrossRef
11.
Zurück zum Zitat De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23(3), 317–330 (2005)MathSciNetCrossRef De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23(3), 317–330 (2005)MathSciNetCrossRef
12.
Zurück zum Zitat Fasshauer, G., Hickernell, F., Woźniakowski, H.: On dimension-independent rates of convergence for function approximation with Gaussian kernels. SIAM J. Numer. Anal. 50(1), 247–271 (2012)MathSciNetCrossRef Fasshauer, G., Hickernell, F., Woźniakowski, H.: On dimension-independent rates of convergence for function approximation with Gaussian kernels. SIAM J. Numer. Anal. 50(1), 247–271 (2012)MathSciNetCrossRef
13.
Zurück zum Zitat Fasshauer, G., McCourt, M.: Kernel-based Approximation Methods Using MATLAB. Number 19 in Interdisciplinary Mathematical Sciences. World Scientific Publishing (2015) Fasshauer, G., McCourt, M.: Kernel-based Approximation Methods Using MATLAB. Number 19 in Interdisciplinary Mathematical Sciences. World Scientific Publishing (2015)
14.
Zurück zum Zitat Fasshauer, G. E.: Meshfree Approximation Methods with MATLAB. Number 6 in Interdisciplinary Mathematical Sciences. World Scientific Publishing (2007) Fasshauer, G. E.: Meshfree Approximation Methods with MATLAB. Number 6 in Interdisciplinary Mathematical Sciences. World Scientific Publishing (2007)
15.
Zurück zum Zitat Fasshauer, G. E., McCourt, M. J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)MathSciNetCrossRef Fasshauer, G. E., McCourt, M. J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)MathSciNetCrossRef
16.
Zurück zum Zitat Gautier, G., Bardenet, R., Valko, M.: On two ways to use determinantal point processes for Monte Carlo integration. Adv. Neural Inf. Process. Syst. 32, 7768–7777 (2019) Gautier, G., Bardenet, R., Valko, M.: On two ways to use determinantal point processes for Monte Carlo integration. Adv. Neural Inf. Process. Syst. 32, 7768–7777 (2019)
17.
19.
Zurück zum Zitat Lee, Y. J., Yoon, G. J., Yoon, J.: Convergence of increasingly flat radial basis interpolants to polynomial interpolants. SIAM J. Math. Anal. 39 (2), 537–553 (2007)MathSciNetCrossRef Lee, Y. J., Yoon, G. J., Yoon, J.: Convergence of increasingly flat radial basis interpolants to polynomial interpolants. SIAM J. Math. Anal. 39 (2), 537–553 (2007)MathSciNetCrossRef
20.
Zurück zum Zitat Minh, H. Q.: Some properties of Gaussian reproducing kernel Hilbert spaces and their implications for function approximation and learning theory. Constr. Approx. 32(2), 307–338 (2010)MathSciNetCrossRef Minh, H. Q.: Some properties of Gaussian reproducing kernel Hilbert spaces and their implications for function approximation and learning theory. Constr. Approx. 32(2), 307–338 (2010)MathSciNetCrossRef
21.
Zurück zum Zitat Müller, S.: Komplexität und Stabilität von kernbasierten Rekonstruktionsmethoden. PhD Thesis, Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen (2009) Müller, S.: Komplexität und Stabilität von kernbasierten Rekonstruktionsmethoden. PhD Thesis, Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen (2009)
22.
Zurück zum Zitat Narcowich, F. J., Ward, J. D., Wendland, H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx. 24(2), 175–186 (2006)MathSciNetCrossRef Narcowich, F. J., Ward, J. D., Wendland, H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx. 24(2), 175–186 (2006)MathSciNetCrossRef
23.
Zurück zum Zitat Paulsen, V. I., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Number 152 in Cambridge Studies in Advanced Mathematics. Cambridge University Press (2016) Paulsen, V. I., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Number 152 in Cambridge Studies in Advanced Mathematics. Cambridge University Press (2016)
24.
Zurück zum Zitat Rieger, C., Zwicknagl, B.: Sampling inequalities for infinitely smooth functions, with applications to interpolation and machine learning. Adv. Comput. Math. 32, 103–129 (2010)MathSciNetCrossRef Rieger, C., Zwicknagl, B.: Sampling inequalities for infinitely smooth functions, with applications to interpolation and machine learning. Adv. Comput. Math. 32, 103–129 (2010)MathSciNetCrossRef
25.
Zurück zum Zitat Rieger, C., Zwicknagl, B.: Improved exponential convergence rates by oversampling near the boundary. Constr. Approx. 39(2), 323–341 (2014)MathSciNetCrossRef Rieger, C., Zwicknagl, B.: Improved exponential convergence rates by oversampling near the boundary. Constr. Approx. 39(2), 323–341 (2014)MathSciNetCrossRef
26.
27.
Zurück zum Zitat Santin, G., Haasdonk, B.: Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation. Dol. Res. Notes Approx. 10, 68–78 (2017)MathSciNetMATH Santin, G., Haasdonk, B.: Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation. Dol. Res. Notes Approx. 10, 68–78 (2017)MathSciNetMATH
28.
Zurück zum Zitat Schaback, R.: Improved error bounds for scattered data interpolation by radial basis functions. Math. Comput. 68(225), 201–216 (1999)MathSciNetCrossRef Schaback, R.: Improved error bounds for scattered data interpolation by radial basis functions. Math. Comput. 68(225), 201–216 (1999)MathSciNetCrossRef
29.
Zurück zum Zitat Schaback, R.: A unified theory of radial basis functions: native Hilbert spaces for radial basis functions II. J. Comput. Appl. Math. 121(1–2), 165–177 (2000)MathSciNetCrossRef Schaback, R.: A unified theory of radial basis functions: native Hilbert spaces for radial basis functions II. J. Comput. Appl. Math. 121(1–2), 165–177 (2000)MathSciNetCrossRef
30.
Zurück zum Zitat Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21(3), 293–317 (2005)MathSciNetCrossRef Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21(3), 293–317 (2005)MathSciNetCrossRef
31.
32.
Zurück zum Zitat Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithm. 24(3), 239–254 (2000)MathSciNetCrossRef Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithm. 24(3), 239–254 (2000)MathSciNetCrossRef
33.
Zurück zum Zitat Sloan, I. H., Woźniakowski, H.: Multivariate approximation for analytic functions with Gaussian kernels. J. Complex. 45, 1–21 (2018)MathSciNetCrossRef Sloan, I. H., Woźniakowski, H.: Multivariate approximation for analytic functions with Gaussian kernels. J. Complex. 45, 1–21 (2018)MathSciNetCrossRef
34.
Zurück zum Zitat Steinwart, I., Hush, D., Scovel, C.: An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Trans. Inf. Theory 52(10), 4635–4643 (2006)MathSciNetCrossRef Steinwart, I., Hush, D., Scovel, C.: An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels. IEEE Trans. Inf. Theory 52(10), 4635–4643 (2006)MathSciNetCrossRef
36.
Zurück zum Zitat Tanaka, K.: Generation of point sets by convex optimization for interpolation in reproducing kernel Hilbert spaces. Numer. Algorithm. 84, 1049–1079 (2020)MathSciNetCrossRef Tanaka, K.: Generation of point sets by convex optimization for interpolation in reproducing kernel Hilbert spaces. Numer. Algorithm. 84, 1049–1079 (2020)MathSciNetCrossRef
37.
Zurück zum Zitat Tanaka, K., Sugihara, M.: Design of accurate formulas for approximating functions in weighted Hardy spaces by discrete energy minimization. IMA J. Numer. Anal. 39(4), 1957–1984 (2019)MathSciNetCrossRef Tanaka, K., Sugihara, M.: Design of accurate formulas for approximating functions in weighted Hardy spaces by discrete energy minimization. IMA J. Numer. Anal. 39(4), 1957–1984 (2019)MathSciNetCrossRef
38.
Zurück zum Zitat Wendland, H.: Scattered Data Approximation. Number 17 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press (2005) Wendland, H.: Scattered Data Approximation. Number 17 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press (2005)
39.
Zurück zum Zitat Wendland, H., Rieger, C.: Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101(4), 729–748 (2005)MathSciNetCrossRef Wendland, H., Rieger, C.: Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101(4), 729–748 (2005)MathSciNetCrossRef
40.
Zurück zum Zitat Wirtz, D., Haasdonk, B.: A vectorial kernel orthogonal greedy algorithm. Dol. Res. Notes Approx. 6, 83–100 (2013) Wirtz, D., Haasdonk, B.: A vectorial kernel orthogonal greedy algorithm. Dol. Res. Notes Approx. 6, 83–100 (2013)
Metadaten
Titel
Kernel-based interpolation at approximate Fekete points
verfasst von
Toni Karvonen
Simo Särkkä
Ken’ichiro Tanaka
Publikationsdatum
10.07.2020
Verlag
Springer US
Erschienen in
Numerical Algorithms / Ausgabe 1/2021
Print ISSN: 1017-1398
Elektronische ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-020-00973-y

Weitere Artikel der Ausgabe 1/2021

Numerical Algorithms 1/2021 Zur Ausgabe