Skip to main content

2011 | OriginalPaper | Buchkapitel

15. Kernel Methods in Bioinformatics

verfasst von : Karsten M. Borgwardt

Erschienen in: Handbook of Statistical Bioinformatics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Kernel methods have now witnessed more than a decade of increasing popularity in the bioinformatics community. In this article, we will compactly review this development, examining the areas in which kernel methods have contributed to computational biology and describing the reasons for their success.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The machine learning community often (incorrectly) uses the term positive definite rather than positive semi-definite.
 
Literatur
1.
Zurück zum Zitat Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.
7.
Zurück zum Zitat Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H. P., Schölkopf, B., & Smola, A. J. (2006). Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics (ISMB), 22(14), e49–e57.CrossRef Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H. P., Schölkopf, B., & Smola, A. J. (2006). Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics (ISMB), 22(14), e49–e57.CrossRef
8.
Zurück zum Zitat Borgwardt, K. M., & Kriegel, H. P. (2005). Shortest-path kernels on graphs. In ICDM (pp. 74–81). IEEE Computer Society. Borgwardt, K. M., & Kriegel, H. P. (2005). Shortest-path kernels on graphs. In ICDM (pp. 74–81). IEEE Computer Society.
9.
Zurück zum Zitat Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S. V. N., Smola, A. J., & Kriegel, H. P. (2005). Protein function prediction via graph kernels. Bioinformatics, 21(Suppl 1), i47–i56.CrossRef Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S. V. N., Smola, A. J., & Kriegel, H. P. (2005). Protein function prediction via graph kernels. Bioinformatics, 21(Suppl 1), i47–i56.CrossRef
10.
Zurück zum Zitat Borgwardt, K. M., Vishwanathan, S. V. N., & Kriegel, H. P. (2006). Class prediction from time series gene expression profiles using dynamical systems kernels. In R. B. Altman, T. Murray, T. E. Klein, A. K. Dunker, & L. Hunter (Eds.), Pacific symposium on biocomputing (pp. 547–558). World Scientific. Borgwardt, K. M., Vishwanathan, S. V. N., & Kriegel, H. P. (2006). Class prediction from time series gene expression profiles using dynamical systems kernels. In R. B. Altman, T. Murray, T. E. Klein, A. K. Dunker, & L. Hunter (Eds.), Pacific symposium on biocomputing (pp. 547–558). World Scientific.
11.
Zurück zum Zitat Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In D. Haussler (Ed.), Proceedings of the annual conference on computational learning theory (pp. 144–152). Pittsburgh, PA: ACM. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In D. Haussler (Ed.), Proceedings of the annual conference on computational learning theory (pp. 144–152). Pittsburgh, PA: ACM.
12.
Zurück zum Zitat Brown, M. P. S., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C., Furey, T. S., et al. (2000). Knowledge-based analysis of microarray gene expression data using support vector machines. Proceedings of the National Academy of Sciences of the United States of America, 97(1), 262–267.CrossRef Brown, M. P. S., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C., Furey, T. S., et al. (2000). Knowledge-based analysis of microarray gene expression data using support vector machines. Proceedings of the National Academy of Sciences of the United States of America, 97(1), 262–267.CrossRef
13.
Zurück zum Zitat Cai, Y. D., Liu, X. J., Xu, X. B., & Chou, K. C. (2002). Prediction of protein structural classes by support vector machines. Computational Chemistry, 26(3), 293–296.CrossRef Cai, Y. D., Liu, X. J., Xu, X. B., & Chou, K. C. (2002). Prediction of protein structural classes by support vector machines. Computational Chemistry, 26(3), 293–296.CrossRef
14.
Zurück zum Zitat Ding, C. H., & Dubchak, I. (2001). Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17(4), 349–358.CrossRef Ding, C. H., & Dubchak, I. (2001). Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17(4), 349–358.CrossRef
15.
Zurück zum Zitat Dobson, P. D., & Doig, A. J. (2003). Distinguishing enzyme structures from non-enzymes without alignments. Journal of Molecular Biology, 330(4), 771–783.CrossRef Dobson, P. D., & Doig, A. J. (2003). Distinguishing enzyme structures from non-enzymes without alignments. Journal of Molecular Biology, 330(4), 771–783.CrossRef
16.
Zurück zum Zitat Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge, UK: Cambridge University Press.MATHCrossRef Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge, UK: Cambridge University Press.MATHCrossRef
17.
Zurück zum Zitat Gärtner, T., Flach, P. A., & Wrobel, S. (2003). On graph kernels: Hardness results and efficient alternatives. In B. Schölkopf & M. K. Warmuth (Eds.), COLT, Lecture Notes in Computer Science (Vol. 2777, pp. 129–143). Springer. Gärtner, T., Flach, P. A., & Wrobel, S. (2003). On graph kernels: Hardness results and efficient alternatives. In B. Schölkopf & M. K. Warmuth (Eds.), COLT, Lecture Notes in Computer Science (Vol. 2777, pp. 129–143). Springer.
18.
Zurück zum Zitat Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., et al. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439), 531–537.CrossRef Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., et al. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439), 531–537.CrossRef
19.
Zurück zum Zitat Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., & Smola, A. (2007). A kernel method for the two-sample-problem. In Advances in neural information processing systems (Vol. 19, pp. 513–520). Cambridge, MA: MIT. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., & Smola, A. (2007). A kernel method for the two-sample-problem. In Advances in neural information processing systems (Vol. 19, pp. 513–520). Cambridge, MA: MIT.
20.
Zurück zum Zitat Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., & Smola, A. J. (2007). A kernel statistical test of independence. In J. C. Platt, D. Koller, Y. Singer, & S. T. Roweis (Eds.), NIPS. MIT Press. Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., & Smola, A. J. (2007). A kernel statistical test of independence. In J. C. Platt, D. Koller, Y. Singer, & S. T. Roweis (Eds.), NIPS. MIT Press.
21.
Zurück zum Zitat Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.MATHCrossRef Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.MATHCrossRef
22.
Zurück zum Zitat Haussler, D. (1999). Convolutional kernels on discrete structures. Tech. Rep., UCSC-CRL-99-10. UC Santa Cruz: Computer Science Department. Haussler, D. (1999). Convolutional kernels on discrete structures. Tech. Rep., UCSC-CRL-99-10. UC Santa Cruz: Computer Science Department.
23.
Zurück zum Zitat Henikoff, S., Henikoff, J. G. (1991). Automated assembly of protein blocks for database searching. Nucleic Acids Research, 19, 6565–6572.CrossRef Henikoff, S., Henikoff, J. G. (1991). Automated assembly of protein blocks for database searching. Nucleic Acids Research, 19, 6565–6572.CrossRef
24.
Zurück zum Zitat Horváth, T., Gärtner, T., & Wrobel, S. (2004). Cyclic pattern kernels for predictive graph mining. In W. Kim, R. Kohavi, J. Gehrke, & W. DuMouchel (Eds.), KDD (pp. 158–167). ACM. Horváth, T., Gärtner, T., & Wrobel, S. (2004). Cyclic pattern kernels for predictive graph mining. In W. Kim, R. Kohavi, J. Gehrke, & W. DuMouchel (Eds.), KDD (pp. 158–167). ACM.
25.
26.
Zurück zum Zitat Imrich, W., & Klavzar, S. (2000). Product graphs: Structure and recognition. In Wiley Interscience Series in Discrete Mathematics. New York: Wiley VCH. Imrich, W., & Klavzar, S. (2000). Product graphs: Structure and recognition. In Wiley Interscience Series in Discrete Mathematics. New York: Wiley VCH.
27.
Zurück zum Zitat Jaakkola, T., Diekhans, M., & Haussler, D. (1999). Using the fisher kernel method to detect remote protein homologies. In T. Lengauer, R. Schneider, P. Bork, D. L. Brutlag, J. I. Glasgow, H. W. Mewes, et al. (Eds.), ISMB (pp. 149–158). AAAI. Jaakkola, T., Diekhans, M., & Haussler, D. (1999). Using the fisher kernel method to detect remote protein homologies. In T. Lengauer, R. Schneider, P. Bork, D. L. Brutlag, J. I. Glasgow, H. W. Mewes, et al. (Eds.), ISMB (pp. 149–158). AAAI.
28.
Zurück zum Zitat Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginalized kernels between labeled graphs. In Proceedings of the 20th International Conference on Machine Learning (ICML). Washington, DC: United States. Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginalized kernels between labeled graphs. In Proceedings of the 20th International Conference on Machine Learning (ICML). Washington, DC: United States.
30.
Zurück zum Zitat Kawashima, S., Ogata, H., & Kanehisa, M. (1999). Aaindex: Amino acid index database. Nucleic Acids Research, 27(1), 368–369.CrossRef Kawashima, S., Ogata, H., & Kanehisa, M. (1999). Aaindex: Amino acid index database. Nucleic Acids Research, 27(1), 368–369.CrossRef
32.
Zurück zum Zitat Kuksa, P. P., Huang, P. H., & Pavlovic, V. (2008). Scalable algorithms for string kernels with inexact matching. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), NIPS (pp. 881–888). MIT. Kuksa, P. P., Huang, P. H., & Pavlovic, V. (2008). Scalable algorithms for string kernels with inexact matching. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), NIPS (pp. 881–888). MIT.
33.
Zurück zum Zitat Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In C. E. Brodley & A. P. Danyluk (Eds.), ICML (pp. 282–289). Morgan Kaufmann. Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In C. E. Brodley & A. P. Danyluk (Eds.), ICML (pp. 282–289). Morgan Kaufmann.
34.
Zurück zum Zitat Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L. E., & Jordan, M. I. (2004). Learning the kernel matrix with semi-definite programming. Journal of Machine Learning Research, 5, 27–72.MATH Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L. E., & Jordan, M. I. (2004). Learning the kernel matrix with semi-definite programming. Journal of Machine Learning Research, 5, 27–72.MATH
36.
Zurück zum Zitat Leslie, C., Eskin, E., & Noble, W. S. (2002). The spectrum kernel: A string kernel for SVM protein classification. In Proceedings of the pacific symposium on biocomputing (pp. 564–575). Leslie, C., Eskin, E., & Noble, W. S. (2002). The spectrum kernel: A string kernel for SVM protein classification. In Proceedings of the pacific symposium on biocomputing (pp. 564–575).
37.
Zurück zum Zitat Leslie, C., Eskin, E., Weston, J., & Noble, W. S. (2002). Mismatch string kernels for SVM protein classification. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems (Vol. 15). Cambridge, MA: MIT. Leslie, C., Eskin, E., Weston, J., & Noble, W. S. (2002). Mismatch string kernels for SVM protein classification. In S. Becker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems (Vol. 15). Cambridge, MA: MIT.
38.
Zurück zum Zitat Leslie, C. S., & Kuang, R. (2003). Fast kernels for inexact string matching. In B. Schölkopf & M. K. Warmuth (Eds.), COLT, Lecture Notes in Computer Science (Vol. 2777, pp. 114–128). Springer. Leslie, C. S., & Kuang, R. (2003). Fast kernels for inexact string matching. In B. Schölkopf & M. K. Warmuth (Eds.), COLT, Lecture Notes in Computer Science (Vol. 2777, pp. 114–128). Springer.
39.
40.
Zurück zum Zitat Lewis, D. P., Jebara, T., & Noble, W. S. (2006). Support vector machine learning from heterogeneous data: An empirical analysis using protein sequence and structure. Bioinformatics (Oxford, England), 22(22), 2753–2760. DOI10.1093/bioinformatics/btl475. URL http://www.ncbi.nlm.nih.gov/pubmed/16966363. PMID: 16966363 Lewis, D. P., Jebara, T., & Noble, W. S. (2006). Support vector machine learning from heterogeneous data: An empirical analysis using protein sequence and structure. Bioinformatics (Oxford, England), 22(22), 2753–2760. DOI10.1093/bioinformatics/btl475. URL http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​16966363. PMID: 16966363
41.
Zurück zum Zitat Liao, L., & Noble, W. S. (2002). Combining pairwise sequence similarity and support vector machines for remote protein homology detection. In RECOMB (pp. 225–232). Liao, L., & Noble, W. S. (2002). Combining pairwise sequence similarity and support vector machines for remote protein homology detection. In RECOMB (pp. 225–232).
42.
Zurück zum Zitat Liu, J., Gough, J., & Rost, B. (2006). Distinguishing Protein-Coding from Non-Coding RNAs through support vector machines. PLoS Genetics, 2(4), 529–536.CrossRef Liu, J., Gough, J., & Rost, B. (2006). Distinguishing Protein-Coding from Non-Coding RNAs through support vector machines. PLoS Genetics, 2(4), 529–536.CrossRef
43.
Zurück zum Zitat Logan, B., Moreno, P., Suzek, B., Weng, Z., & Kasif, S. (2001). A study of remote homology detection. Tech. Rep., Cambridge Research Laboratory. Logan, B., Moreno, P., Suzek, B., Weng, Z., & Kasif, S. (2001). A study of remote homology detection. Tech. Rep., Cambridge Research Laboratory.
44.
Zurück zum Zitat Matsuda, S., Vert, J., Saigo, H., Ueda, N., Toh, H., & Akutsu, T. (2005). A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Science: A Publication of the Protein Society, 14(11), 2804–2813. DOI10.1110/ps.051597405. URL http://www.ncbi.nlm.nih.gov/pubmed/16251364. PMID: 16251364 Matsuda, S., Vert, J., Saigo, H., Ueda, N., Toh, H., & Akutsu, T. (2005). A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Science: A Publication of the Protein Society, 14(11), 2804–2813. DOI10.1110/ps.051597405. URL http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​16251364. PMID: 16251364
46.
Zurück zum Zitat Mukherjee, S., Tamayo, P., Slonim, D., Verri, A., Golub, T., Mesirov, J.P., et al. (2000). Support vector machine classification of microarray data. Tech. Rep., Artificial Intelligence Laboratory, Massachusetts Institute of Technology. Mukherjee, S., Tamayo, P., Slonim, D., Verri, A., Golub, T., Mesirov, J.P., et al. (2000). Support vector machine classification of microarray data. Tech. Rep., Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
47.
Zurück zum Zitat Murzin, A. G., Brenner, S. E., Hubbard, T., & Chothia, C. (1995). SCOP: A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 247(4), 536–40. DOI10.1006/jmbi.1995.0159. URL http://www.ncbi.nlm.nih.gov/pubmed/7723011. PMID: 7723011 Murzin, A. G., Brenner, S. E., Hubbard, T., & Chothia, C. (1995). SCOP: A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 247(4), 536–40. DOI10.1006/jmbi.1995.0159. URL http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​7723011. PMID: 7723011
48.
Zurück zum Zitat Noble, W. (2004). Support vector machine applications in computational biology. In B. Schölkopf, K. Tsuda, & J. P. Vert (Eds.), Kernel methods in computational biology. Cambridge, MA: MIT. Noble, W. (2004). Support vector machine applications in computational biology. In B. Schölkopf, K. Tsuda, & J. P. Vert (Eds.), Kernel methods in computational biology. Cambridge, MA: MIT.
50.
Zurück zum Zitat Ong, C. S., & Smola, A. J. (2003). Machine learning with hyperkernels. In T. Fawcett & N. Mishra (Eds.), ICML (pp. 568–575). AAAI. Ong, C. S., & Smola, A. J. (2003). Machine learning with hyperkernels. In T. Fawcett & N. Mishra (Eds.), ICML (pp. 568–575). AAAI.
51.
Zurück zum Zitat Ortiz, A. R., Strauss, C. E. M., & Olmea, O. (2002). MAMMOTH (matching molecular models obtained from theory): An automated method for model comparison. Protein Science: A Publication of the Protein Society, 11(11), 2606–2621. DOI10.1110/ps.0215902. URL http://www.ncbi.nlm.nih.gov/pubmed/12381844. PMID: 12381844 Ortiz, A. R., Strauss, C. E. M., & Olmea, O. (2002). MAMMOTH (matching molecular models obtained from theory): An automated method for model comparison. Protein Science: A Publication of the Protein Society, 11(11), 2606–2621. DOI10.1110/ps.0215902. URL http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​12381844. PMID: 12381844
54.
Zurück zum Zitat Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y. (2007). More efficiency in multiple kernel learning. In Z. Ghahramani (Ed.), ICML, ACM International Conference Proceeding Series (Vol. 227, pp. 775–782). ACM. Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y. (2007). More efficiency in multiple kernel learning. In Z. Ghahramani (Ed.), ICML, ACM International Conference Proceeding Series (Vol. 227, pp. 775–782). ACM.
55.
Zurück zum Zitat Ramon, J., & Gärtner, T. (2003). Expressivity versus efficiency of graph kernels. Tech. Rep., First International Workshop on Mining Graphs, Trees and Sequences (held with ECML/PKDD’03). Ramon, J., & Gärtner, T. (2003). Expressivity versus efficiency of graph kernels. Tech. Rep., First International Workshop on Mining Graphs, Trees and Sequences (held with ECML/PKDD’03).
56.
Zurück zum Zitat Rätsch, G., Sönnenburg, S., & Schölkopf, B. (2005). RASE: Recognition of alternatively spliced exons in c. elegans. Bioinformatics, 21 (Suppl. 1), i369–i377. Rätsch, G., Sönnenburg, S., & Schölkopf, B. (2005). RASE: Recognition of alternatively spliced exons in c. elegans. Bioinformatics, 21 (Suppl. 1), i369–i377.
57.
Zurück zum Zitat Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K., Sommer, R., et al. (2007). Improving the Caenorhabditis elegans genome annotation using machine learning. PLoS Computational Biology, 3(2), e20. PMID: 17319737CrossRef Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K., Sommer, R., et al. (2007). Improving the Caenorhabditis elegans genome annotation using machine learning. PLoS Computational Biology, 3(2), e20. PMID: 17319737CrossRef
61.
Zurück zum Zitat Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels. Cambridge, MA: MIT. Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels. Cambridge, MA: MIT.
62.
Zurück zum Zitat Schölkopf, B., Smola, A. J., & Müller, K. R. (1997). Kernel principal component analysis. In W. Gerstner, A. Germond, M. Hasler, & J. D. Nicoud (Eds.), Artificial neural networks ICANN’97 (Vol. 1327, pp. 583–588). Berlin: Springer Lecture Notes in Computer Science.CrossRef Schölkopf, B., Smola, A. J., & Müller, K. R. (1997). Kernel principal component analysis. In W. Gerstner, A. Germond, M. Hasler, & J. D. Nicoud (Eds.), Artificial neural networks ICANN’97 (Vol. 1327, pp. 583–588). Berlin: Springer Lecture Notes in Computer Science.CrossRef
63.
Zurück zum Zitat Schölkopf, B., Tsuda, K., & Vert, J. P. (2004). Kernel Methods in Computational Biology. Cambridge, MA: MIT. Schölkopf, B., Tsuda, K., & Vert, J. P. (2004). Kernel Methods in Computational Biology. Cambridge, MA: MIT.
64.
Zurück zum Zitat Schultheiss, S. J., Busch, W., Lohmann, J. U., Kohlbacher, O., & Rätsch, G. (2009). KIRMES: kernel-based identification of regulatory modules in euchromatic sequences. Bioinformatics (Oxford, England), DOI10.1093/bioinformatics/btp278. URL http://www.ncbi.nlm.nih.gov/pubmed/19389732. PMID: 19389732 Schultheiss, S. J., Busch, W., Lohmann, J. U., Kohlbacher, O., & Rätsch, G. (2009). KIRMES: kernel-based identification of regulatory modules in euchromatic sequences. Bioinformatics (Oxford, England), DOI10.1093/bioinformatics/btp278. URL http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19389732. PMID: 19389732
66.
Zurück zum Zitat Schweikert, G., Zien, A., Zeller, G., Behr, J., Dieterich, C., Ong, C. S., et al. (2009). mGene: Accurate SVM-based gene finding with an application to nematode genomes. Genome Research, 19(11), 2133–2143. DOI10.1101/gr.090597.108. URL http://www.ncbi.nlm.nih.gov/pubmed/19564452. PMID: 19564452 Schweikert, G., Zien, A., Zeller, G., Behr, J., Dieterich, C., Ong, C. S., et al. (2009). mGene: Accurate SVM-based gene finding with an application to nematode genomes. Genome Research, 19(11), 2133–2143. DOI10.1101/gr.090597.108. URL http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19564452. PMID: 19564452
67.
Zurück zum Zitat Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge, UK: Cambridge University Press.CrossRef Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge, UK: Cambridge University Press.CrossRef
68.
Zurück zum Zitat Shervashidze, N., & Borgwardt, K. M. (2009). Fast subtree kernels on graphs. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), NIPS (pp. 1660–1668). Cambridge, MA: MIT. Shervashidze, N., & Borgwardt, K. M. (2009). Fast subtree kernels on graphs. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), NIPS (pp. 1660–1668). Cambridge, MA: MIT.
69.
Zurück zum Zitat Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., & Borgwardt, K. M. (2009). Efficient graphlet kernels for large graph comparison. In D. van Dyk & M. Welling (Eds.), Proceedings of the twelfth international conference on artificial intelligence and statistics. Clearwater Beach, Florida. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., & Borgwardt, K. M. (2009). Efficient graphlet kernels for large graph comparison. In D. van Dyk & M. Welling (Eds.), Proceedings of the twelfth international conference on artificial intelligence and statistics. Clearwater Beach, Florida.
71.
Zurück zum Zitat Song, L., Bedo, J., Borgwardt, K., Gretton, A., & Smola, A. (2007). Gene selection via the BAHSIC family of algorithms. Bioinformatics, 23(13), i490–i498.CrossRef Song, L., Bedo, J., Borgwardt, K., Gretton, A., & Smola, A. (2007). Gene selection via the BAHSIC family of algorithms. Bioinformatics, 23(13), i490–i498.CrossRef
72.
Zurück zum Zitat Song, L., Smola, A., Gretton, A., Borgwardt, K., & Bedo, J. (2007). Supervised feature selection via dependence estimation. In: Ghahramani, Z. (ed.): ACM International Conference Proceeding Series, vol. 227. ACM. Song, L., Smola, A., Gretton, A., Borgwardt, K., & Bedo, J. (2007). Supervised feature selection via dependence estimation. In: Ghahramani, Z. (ed.): ACM International Conference Proceeding Series, vol. 227. ACM.
73.
Zurück zum Zitat Sonnenburg, S., Rätsch, G., Jagota, A. K., & Müller, K. R. (2002). New methods for splice site recognition. In Proceedings of the International Conference on Artificial Neural Networks (ICANN) (pp. 329–336). Sonnenburg, S., Rätsch, G., Jagota, A. K., & Müller, K. R. (2002). New methods for splice site recognition. In Proceedings of the International Conference on Artificial Neural Networks (ICANN) (pp. 329–336).
74.
Zurück zum Zitat Sonnenburg, S., Rätsch, G., & Rieck, K. (2007). Large-scale learning with string kernels. In L. Bottou, O. Chapelle, D. DeCoste, & J. Weston (Eds.), Large-Scale kernel machines (pp. 73—104). Cambridge, MA: MIT. Sonnenburg, S., Rätsch, G., & Rieck, K. (2007). Large-scale learning with string kernels. In L. Bottou, O. Chapelle, D. DeCoste, & J. Weston (Eds.), Large-Scale kernel machines (pp. 73—104). Cambridge, MA: MIT.
75.
Zurück zum Zitat Sonnenburg, S., Rätsch, G., & Schäfer, C. (2005). A general and efficient multiple kernel learning algorithm. In NIPS. Sonnenburg, S., Rätsch, G., & Schäfer, C. (2005). A general and efficient multiple kernel learning algorithm. In NIPS.
76.
Zurück zum Zitat Sonnenburg, S., Rätsch, G., & Schäfer, C. (2005). Learning interpretable SVMs for biological sequence classification. In RECOMB 2005, LNBI 3500 (pp. 389–407). Berlin, Heidelberg: Springer-Verlag. Sonnenburg, S., Rätsch, G., & Schäfer, C. (2005). Learning interpretable SVMs for biological sequence classification. In RECOMB 2005, LNBI 3500 (pp. 389–407). Berlin, Heidelberg: Springer-Verlag.
80.
Zurück zum Zitat Su, Q. J., Lu, L., Saxonov, S., & Brutlag, D. L. (2005). eBLOCKs: Enumerating conserved protein blocks to achieve maximal sensitivity and specificity. Nucleic Acids Research, 33(Database issue), D178–D182. DOI10.1093/nar/gki060. URL http://www.ncbi.nlm.nih.gov/pubmed/15608172. PMID: 15608172 Su, Q. J., Lu, L., Saxonov, S., & Brutlag, D. L. (2005). eBLOCKs: Enumerating conserved protein blocks to achieve maximal sensitivity and specificity. Nucleic Acids Research, 33(Database issue), D178–D182. DOI10.1093/nar/gki060. URL http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15608172. PMID: 15608172
81.
Zurück zum Zitat Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, 6, 1453–1484.MathSciNetMATH Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, 6, 1453–1484.MathSciNetMATH
84.
Zurück zum Zitat Tsuda, K., Shin, H., & Schölkopf, B. (2005). Fast protein classification with multiple networks. Bioinformatics, 21 (Suppl. 2), ii59–ii65. Tsuda, K., Shin, H., & Schölkopf, B. (2005). Fast protein classification with multiple networks. Bioinformatics, 21 (Suppl. 2), ii59–ii65.
85.
Zurück zum Zitat Vapnik, V. (1998). Statistical learning theory. New York: Wiley.MATH Vapnik, V. (1998). Statistical learning theory. New York: Wiley.MATH
86.
Zurück zum Zitat Vert, J. (2002). A tree kernel to analyse phylogenetic profiles. Bioinformatics, 18, S276–S284.CrossRef Vert, J. (2002). A tree kernel to analyse phylogenetic profiles. Bioinformatics, 18, S276–S284.CrossRef
88.
Zurück zum Zitat Vert, J. P., Saigo, H., & Akutsu, T. (2004). Local alignment kernels for biological sequences. In B. Schölkopf, K. Tsuda, & J. P. Vert (Eds.), Kernel methods in computational biology (pp. 261–274). Cambridge, MA: MIT. Vert, J. P., Saigo, H., & Akutsu, T. (2004). Local alignment kernels for biological sequences. In B. Schölkopf, K. Tsuda, & J. P. Vert (Eds.), Kernel methods in computational biology (pp. 261–274). Cambridge, MA: MIT.
89.
Zurück zum Zitat Vishwanathan, S., & Smola, A. (2003). Fast kernels for string and tree matching. In K. Tsuda, B. Schölkopf, & J. Vert (Eds.), Kernels and bioinformatics. Cambridge, MA: MIT. Forthcoming Vishwanathan, S., & Smola, A. (2003). Fast kernels for string and tree matching. In K. Tsuda, B. Schölkopf, & J. Vert (Eds.), Kernels and bioinformatics. Cambridge, MA: MIT. Forthcoming
91.
Zurück zum Zitat Vishwanathan, S. V. N., Borgwardt, K., & Schraudolph, N. N. (2007). Fast computation of graph kernels. In B. Schölkopf, J. Platt, & T. Hofmann (Eds.), Advances in neural information processing systems (Vol. 19). Cambridge MA: MIT. Vishwanathan, S. V. N., Borgwardt, K., & Schraudolph, N. N. (2007). Fast computation of graph kernels. In B. Schölkopf, J. Platt, & T. Hofmann (Eds.), Advances in neural information processing systems (Vol. 19). Cambridge MA: MIT.
93.
Zurück zum Zitat Weinberger, K. Q., Sha, F., & Saul, L. K. (2004). Learning a kernel matrix for nonlinear dimensionality reduction. In Proceedings of the 21st international conference on machine learning. Banff, Canada. Weinberger, K. Q., Sha, F., & Saul, L. K. (2004). Learning a kernel matrix for nonlinear dimensionality reduction. In Proceedings of the 21st international conference on machine learning. Banff, Canada.
94.
Zurück zum Zitat Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik, V. (2000). Feature selection for svms. In T. K. Leen, T. G. Dietterich, V. Tresp (Eds.), NIPS (pp. 668–674). MIT. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik, V. (2000). Feature selection for svms. In T. K. Leen, T. G. Dietterich, V. Tresp (Eds.), NIPS (pp. 668–674). MIT.
95.
96.
Zurück zum Zitat Yamanishi, Y., Vert, J., & Kanehisa, M. (2005). Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics (Oxford, England), 21 (Suppl 1), i468–i477. DOI10.1093/bioinformatics/bti1012. URL http://www.ncbi.nlm.nih.gov/pubmed/15961492. PMID: 15961492 Yamanishi, Y., Vert, J., & Kanehisa, M. (2005). Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics (Oxford, England), 21 (Suppl 1), i468–i477. DOI10.1093/bioinformatics/bti1012. URL http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15961492. PMID: 15961492
97.
Zurück zum Zitat Zeller, G., Clark, R. M., Schneeberger, K., Bohlen, A., Weigel, D., & Rätsch, G. (2008). Detecting polymorphic regions in Arabidopsis thaliana with resequencing microarrays. Genome Research, 18(6), 918–929.CrossRef Zeller, G., Clark, R. M., Schneeberger, K., Bohlen, A., Weigel, D., & Rätsch, G. (2008). Detecting polymorphic regions in Arabidopsis thaliana with resequencing microarrays. Genome Research, 18(6), 918–929.CrossRef
98.
Zurück zum Zitat Zeller, G., Henz, S. R., Laubinger, S., Weigel, D., & Rätsch, G. (2008). Transcript normalization and segmentation of tiling array data. In R. B. Altman, A. K. Dunker, L. Hunter, T. Murray, & T.E. Klein (Eds.), Pacific symposium on biocomputing (pp. 527–538). World Scientific. Zeller, G., Henz, S. R., Laubinger, S., Weigel, D., & Rätsch, G. (2008). Transcript normalization and segmentation of tiling array data. In R. B. Altman, A. K. Dunker, L. Hunter, T. Murray, & T.E. Klein (Eds.), Pacific symposium on biocomputing (pp. 527–538). World Scientific.
Metadaten
Titel
Kernel Methods in Bioinformatics
verfasst von
Karsten M. Borgwardt
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-16345-6_15