Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Key Drivers and Technical Developments in Aviation

verfasst von : Kay Plötner

Erschienen in: Biokerosene

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aviation industry has grown strongly over the past decades at a global rate of around 5 %/a. Within the context of this rapid growth, environmental awareness of societies and general actions to mitigate global climate change have led various institutions and stakeholders to formulate and proclaim goals for limiting greenhouse gas emissions of the future global air transport fleet which are a fleet-wide efficiency improvement of 1.5 %/a from the present until 2020, a cap of CO2 emissions from 2020 onwards by market-based measures and a halving of the global fleet’s overall CO2 emission quantities by 2050 relative to 2005 levels. However, despite these substantial efforts to develop new or upgraded aircraft programmes in order to increase fuel efficiency, it is obvious that the target of carbon-neutral growth from 2020 onwards will not be met without market-based measures. In the long term, more radical technologies will be promoted like unconventional aircraft concepts and new engine core concepts. Also alternative energy carriers like electricity, hydrogen, or liquid natural gas are technologies with potential to reduce the environmental footprint, but typically it takes 20 years or more from conceptualisation of a new technology to operational maturity. Today, available technology improvements are outpaced by the strong growth in aviation, while future novel and more radical technologies with large CO2 emission reduction potentials are still at very low technology readiness levels and hence far from industrial implementation. Even in the case of a rapid technology maturation, a fleet-wide penetration would require radical production ramp-ups and an aggressive industrialisation strategy for such novel technologies. To bridge the gap between the fleet-wide introduction of ultra-low emission aircraft technologies and the necessary substantial reduction of greenhouse gas emissions already today, renewable “drop-in” fuels, offering substantially smaller CO2 footprints compared to conventional jet fuel, are considered a promising way forward.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[2]
Zurück zum Zitat Airbus (2012) Global market forecast 2012–2031: navigating the future. Airbus (2012) Global market forecast 2012–2031: navigating the future.
[3]
Zurück zum Zitat Airport Council International (ACI) (2009) Global traffic forecast 2008–2027 Airport Council International (ACI) (2009) Global traffic forecast 2008–2027
[4]
Zurück zum Zitat Boeing (2012) Current market outlook 2012–2031. Accessed 26 Aug 2016 Boeing (2012) Current market outlook 2012–2031. Accessed 26 Aug 2016
[5]
Zurück zum Zitat DKMA (2013) Traffic forecast advisory services – 20 year outlook DKMA (2013) Traffic forecast advisory services – 20 year outlook
[6]
Zurück zum Zitat Embraer (2012) Market outlook 2012–2031. Embraer (2012) Market outlook 2012–2031.
[9]
Zurück zum Zitat Marketing group of Japan aircraft (2011) Worldwide market forecast for commercial air transport 2011–2030 Marketing group of Japan aircraft (2011) Worldwide market forecast for commercial air transport 2011–2030
[10]
Zurück zum Zitat Rolls Royce (2009) Market outlook 2009 – forecast 2009–2028 Rolls Royce (2009) Market outlook 2009 – forecast 2009–2028
[11]
Zurück zum Zitat Teyssier N (ICAO) (2012) ACI airport statistics and forecasting workshop – aviation statistics & data: a vital tool for the decision making process. Presentation. Teyssier N (ICAO) (2012) ACI airport statistics and forecasting workshop – aviation statistics & data: a vital tool for the decision making process. Presentation.
[12]
Zurück zum Zitat Teyssier N (ICAO) (2012) 37th FAA aviation forecast conference – global air transport outlook. Presentation. Teyssier N (ICAO) (2012) 37th FAA aviation forecast conference – global air transport outlook. Presentation.
[14]
Zurück zum Zitat ICAO Environmental Report (2013) Aviation and climate change. International Civil Aviation Organization, Montreal ICAO Environmental Report (2013) Aviation and climate change. International Civil Aviation Organization, Montreal
[19]
Zurück zum Zitat Advisory Council for Aeronautical Research in Europe (ACARE) (2001) European aeronautics: a vision for 2020 Advisory Council for Aeronautical Research in Europe (ACARE) (2001) European aeronautics: a vision for 2020
[20]
Zurück zum Zitat Muller R (ASD AeroSpace and Defence Industries Association of Europe) (2010) “ACARE Goals (AGAPE) Progress Evaluation”, Project Final Report Publishable Summary, Support Action Funding Scheme, Proposal No. 205768, European Commission Directorate General for Research and Innovation, June Muller R (ASD AeroSpace and Defence Industries Association of Europe) (2010) “ACARE Goals (AGAPE) Progress Evaluation”, Project Final Report Publishable Summary, Support Action Funding Scheme, Proposal No. 205768, European Commission Directorate General for Research and Innovation, June
[21]
Zurück zum Zitat Advisory Council for Aviation Research and Innovation in Europe (ACARE) (2012) Realising Europe’s Vision for Aviation: Strategic Research and Innovation Agenda, Volume 1, September Advisory Council for Aviation Research and Innovation in Europe (ACARE) (2012) Realising Europe’s Vision for Aviation: Strategic Research and Innovation Agenda. Accessed 26 Aug 2016 Advisory Council for Aviation Research and Innovation in Europe (ACARE) (2012) Realising Europe’s Vision for Aviation: Strategic Research and Innovation Agenda, Volume 1, September Advisory Council for Aviation Research and Innovation in Europe (ACARE) (2012) Realising Europe’s Vision for Aviation: Strategic Research and Innovation Agenda. Accessed 26 Aug 2016
[27]
Zurück zum Zitat Hornung M, Isikveren AT, Cole M, Sizmann A (2013) Ce-Liner – case study for eMobility in air transportation. In: Aviation Technology, Integration and Operations Conference, August, Los Angeles Hornung M, Isikveren AT, Cole M, Sizmann A (2013) Ce-Liner – case study for eMobility in air transportation. In: Aviation Technology, Integration and Operations Conference, August, Los Angeles
[28]
Zurück zum Zitat Ploetner KO, Miltner L, Jochem P, Batteiger V, Hornung M (2016) Environmental life-cycle assessment of universally-electric powered transport aircraft. Braunschweig Ploetner KO, Miltner L, Jochem P, Batteiger V, Hornung M (2016) Environmental life-cycle assessment of universally-electric powered transport aircraft. Braunschweig
[30]
Zurück zum Zitat Withers MR, Malina R, Gilmore CK, Gibbs JM, Trigg C, Wolfe PJ, Trivedi P, Barrett SRH (2014) Economic and environmental assessment of liquefied natural gas as a supplemental aircraft fuel. Prog Aerosp Sci 66:17–36. ISSN 0376-0421. http://dx.doi.org/10.1016/j.paerosci.2013.12.002CrossRef Withers MR, Malina R, Gilmore CK, Gibbs JM, Trigg C, Wolfe PJ, Trivedi P, Barrett SRH (2014) Economic and environmental assessment of liquefied natural gas as a supplemental aircraft fuel. Prog Aerosp Sci 66:17–36. ISSN 0376-0421. http://​dx.​doi.​org/​10.​1016/​j.paerosci.2013.12.002CrossRef
[32]
Zurück zum Zitat Airbus Group, Press release, Airbus Group and Siemens Sign Long-Term Cooperation Agreement in the Field of Hybrid Electric Propulsion Systems , April 2016 Munich Airbus Group, Press release, Airbus Group and Siemens Sign Long-Term Cooperation Agreement in the Field of Hybrid Electric Propulsion Systems , April 2016 Munich
[33]
Zurück zum Zitat Randt NP, Jessberger C, Ploetner KO (2015) Estimating the fuel saving potential of commercial aircraft in future fleet-development scenarios. In: AIAA Aviation 2015 Conference, Dallas Randt NP, Jessberger C, Ploetner KO (2015) Estimating the fuel saving potential of commercial aircraft in future fleet-development scenarios. In: AIAA Aviation 2015 Conference, Dallas
Metadaten
Titel
Key Drivers and Technical Developments in Aviation
verfasst von
Kay Plötner
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53065-8_3