Skip to main content
Erschienen in: Journal of Scientific Computing 1/2017

16.03.2017

Kinetic Modeling of Local Epidemic Spread and Its Simulation

verfasst von: Ryosuke Yano

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The local epidemic spread in physical space is modeled using the kinetic equation. In particular, the infection occurs via the binary interaction between the uninfected and infected individuals. Then, the local epidemic spread can be modeled on the basis of the stochastic Boltzmann type equation. In this paper, the normalized virus titer inside the infected human body is defined as the function of the elapsed time, which is measured from the infection time. Consequently, the probability of the infection at the binary human interaction increases, as the normalized virus titer inside the human body increases, whereas the normalized virus titer inside the infected human body decreases, after the normalized virus titer reaches to its maximum value, namely, unity, in the characteristic time. Numerical results indicate that the propagation speed of the boundary between the infected and uninfected domains depends on such a characteristic time, strongly, when the Knudsen number and temperature are fixed. Such a dependency of the propagation speed of the boundary between the infected and uninfected domains on the characteristic time can be described by the Fisher–Kolmogorov–Petrovsky–Piscounov equation which is introduced from the stochastic Boltzmann type equation. Finally, we consider three types of the human behavior as plausible actions to the local epidemic spread.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In item (ii), the epidemic spread is decelerated by the decrease in \(\tilde{\tau }_m\), when the shortest collisional time between the infected and uninfected individuals is longer than \(\tilde{\tau }_m\), adequately, whereas such a situation is not postulated in this paper
 
Literatur
5.
Zurück zum Zitat Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115(772), 700–721 (1927)CrossRefMATH Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115(772), 700–721 (1927)CrossRefMATH
6.
Zurück zum Zitat Kühnert, D., et al.: Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birthdeath SIR model. J. R. Soc. Interface 11(94), 20131106 (2014)CrossRef Kühnert, D., et al.: Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birthdeath SIR model. J. R. Soc. Interface 11(94), 20131106 (2014)CrossRef
7.
Zurück zum Zitat Korobeinikov, A., Wake, G.C.: Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 15(8), 955–960 (2002)MathSciNetCrossRefMATH Korobeinikov, A., Wake, G.C.: Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 15(8), 955–960 (2002)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92(17), 178701 (2004)CrossRef Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett. 92(17), 178701 (2004)CrossRef
11.
Zurück zum Zitat Starnini, M., et al.: Immunization strategies for epidemic processes in timevarying contact networks. J. Theor. Biol. 337, 89–100 (2013)MathSciNetCrossRef Starnini, M., et al.: Immunization strategies for epidemic processes in timevarying contact networks. J. Theor. Biol. 337, 89–100 (2013)MathSciNetCrossRef
12.
Zurück zum Zitat Colizza, V., et al.: The role of the airline transportation network in the prediction and predictability of global epidemics. PNAS USA 103(7), 2015–2020 (2006)CrossRef Colizza, V., et al.: The role of the airline transportation network in the prediction and predictability of global epidemics. PNAS USA 103(7), 2015–2020 (2006)CrossRef
13.
Zurück zum Zitat Gautreau, A., Barrat, A., Barthelemy, M.: Global disease spread: statistics and estimation of arrival times. J. Theor. Biol. 251(3), 509–522 (2008)MathSciNetCrossRef Gautreau, A., Barrat, A., Barthelemy, M.: Global disease spread: statistics and estimation of arrival times. J. Theor. Biol. 251(3), 509–522 (2008)MathSciNetCrossRef
14.
Zurück zum Zitat Fuks, H., Lawniczak, A.T.: Individual-based lattice model for spatial spread of epidemics. Discrete Dyn. Nat. Soc. 6(3), 191–200 (2001)CrossRefMATH Fuks, H., Lawniczak, A.T.: Individual-based lattice model for spatial spread of epidemics. Discrete Dyn. Nat. Soc. 6(3), 191–200 (2001)CrossRefMATH
15.
Zurück zum Zitat Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)CrossRef Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)CrossRef
16.
Zurück zum Zitat Bellomo, N.: Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach. Springer Science and Business Media, Berlin (2008)MATH Bellomo, N.: Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach. Springer Science and Business Media, Berlin (2008)MATH
17.
Zurück zum Zitat Yano, R., Suzuki, K.: Coarsely grained stochastic Boltzmann equation and its moment equations. Phys. A 391(7), 2291–2299 (2012)CrossRef Yano, R., Suzuki, K.: Coarsely grained stochastic Boltzmann equation and its moment equations. Phys. A 391(7), 2291–2299 (2012)CrossRef
18.
Zurück zum Zitat Baccam, P., et al.: Kinetics of influenza A virus infection in humans. J. Virol. 80(15), 7590–7599 (2006)CrossRef Baccam, P., et al.: Kinetics of influenza A virus infection in humans. J. Virol. 80(15), 7590–7599 (2006)CrossRef
19.
Zurück zum Zitat Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Claredon, Oxford (1994) Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Claredon, Oxford (1994)
20.
Zurück zum Zitat Tsuge, S., Sagara, K.: A new hierarchy system on the basis of a “Master” Boltzmann equation for microscopic density. J. Stat. Phys. 5(5), 403–425 (1975)CrossRef Tsuge, S., Sagara, K.: A new hierarchy system on the basis of a “Master” Boltzmann equation for microscopic density. J. Stat. Phys. 5(5), 403–425 (1975)CrossRef
21.
22.
Zurück zum Zitat Gipps, P.G., Marksjö, B.: A micro-simulation model for pedestrian flows. Math. Comput. Simul. 27, 95–105 (1985)CrossRef Gipps, P.G., Marksjö, B.: A micro-simulation model for pedestrian flows. Math. Comput. Simul. 27, 95–105 (1985)CrossRef
23.
Zurück zum Zitat Garzo, V., Dufty, J.W.: Hydrodynamics for a granular binary mixture at low density. Phys. Fluids 14(4), 1476 (2002)CrossRefMATH Garzo, V., Dufty, J.W.: Hydrodynamics for a granular binary mixture at low density. Phys. Fluids 14(4), 1476 (2002)CrossRefMATH
24.
Zurück zum Zitat Bénichou, O., Calvez, V., Meunier, N., Voituriez, R.: Front acceleration by dynamic selection in Fisher population waves. Phys. Rev. E 86(4), 041908 (2012)CrossRef Bénichou, O., Calvez, V., Meunier, N., Voituriez, R.: Front acceleration by dynamic selection in Fisher population waves. Phys. Rev. E 86(4), 041908 (2012)CrossRef
25.
Zurück zum Zitat Chotibut, T., Nelson, D.R., Succi, S.: Striated populations in disordered environments with advection. Phys. A 465, 500 (2017)MathSciNetCrossRef Chotibut, T., Nelson, D.R., Succi, S.: Striated populations in disordered environments with advection. Phys. A 465, 500 (2017)MathSciNetCrossRef
26.
Zurück zum Zitat Succi, S.: A note on the Lattice Boltzmann versus finite difference methods for the numerical solution of the Fisher’s equation. Int. J. Mod. Phys. C 25(01), 1340015 (2014)MathSciNetCrossRef Succi, S.: A note on the Lattice Boltzmann versus finite difference methods for the numerical solution of the Fisher’s equation. Int. J. Mod. Phys. C 25(01), 1340015 (2014)MathSciNetCrossRef
27.
Zurück zum Zitat Braun, M., Golubitsky, M.: Differential Equations and Their Applications, vol. 4. Springer, New York (1983)CrossRef Braun, M., Golubitsky, M.: Differential Equations and Their Applications, vol. 4. Springer, New York (1983)CrossRef
28.
Zurück zum Zitat Yano, R., Suzuki, K., Kuroda, H.: Analytical and numerical study on the nonequilibrium relaxation by the simplified FokkerPlanck equation. Phys. Fluids 21, 047104 (2009)CrossRefMATH Yano, R., Suzuki, K., Kuroda, H.: Analytical and numerical study on the nonequilibrium relaxation by the simplified FokkerPlanck equation. Phys. Fluids 21, 047104 (2009)CrossRefMATH
29.
Zurück zum Zitat Bell, J.B., Garcia, A.L., Williams, S.A.: Numerical methods for the stochastic Landau–Lifshitz Navier–Stokes equations. Phys. Rev. E 76(1), 016708 (2007)MathSciNetCrossRef Bell, J.B., Garcia, A.L., Williams, S.A.: Numerical methods for the stochastic Landau–Lifshitz Navier–Stokes equations. Phys. Rev. E 76(1), 016708 (2007)MathSciNetCrossRef
30.
Zurück zum Zitat Ivanov, M.S., Rogasinsky, S.V.: Analysis of numerical techniques of dirct simulation Monte Carlo method in the rarefied gas dynamics. Russ. J. Numer. Anal. Math. Model. 3(6), 453–466 (1988)CrossRef Ivanov, M.S., Rogasinsky, S.V.: Analysis of numerical techniques of dirct simulation Monte Carlo method in the rarefied gas dynamics. Russ. J. Numer. Anal. Math. Model. 3(6), 453–466 (1988)CrossRef
31.
Zurück zum Zitat Koura, K., Matsumoto, H.: Variable soft sphere molecular model for inversepower-law or Lennard–Jones potential. Phys. Fluids A 3(10), 2459 (1991)CrossRefMATH Koura, K., Matsumoto, H.: Variable soft sphere molecular model for inversepower-law or Lennard–Jones potential. Phys. Fluids A 3(10), 2459 (1991)CrossRefMATH
32.
Zurück zum Zitat Helbing, D., Treiber, M.: Enskog equations for traffic flow evaluated up to Navier–Stokes order. Granul. Matter 1(1), 21 (1998)CrossRefMATH Helbing, D., Treiber, M.: Enskog equations for traffic flow evaluated up to Navier–Stokes order. Granul. Matter 1(1), 21 (1998)CrossRefMATH
33.
Zurück zum Zitat Helbing, D.: A fluid-dynamic model for the movement of pedestrians. Complex Syst. 6, 391–415 (1992)MathSciNetMATH Helbing, D.: A fluid-dynamic model for the movement of pedestrians. Complex Syst. 6, 391–415 (1992)MathSciNetMATH
Metadaten
Titel
Kinetic Modeling of Local Epidemic Spread and Its Simulation
verfasst von
Ryosuke Yano
Publikationsdatum
16.03.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0408-9

Weitere Artikel der Ausgabe 1/2017

Journal of Scientific Computing 1/2017 Zur Ausgabe