Skip to main content

2012 | OriginalPaper | Buchkapitel

Kinetic Models for Biologically Active Suspensions

verfasst von : David Saintillan

Erschienen in: Natural Locomotion in Fluids and on Surfaces

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biologically active suspensions, such as suspensions of swimming microorganisms, exhibit fascinating dynamics including large-scale collective motions and pattern formation, complex chaotic flows with good mixing properties, enhanced passsive tracer diffusion, among others. There has been much recent interest in modeling and understanding these effects, which often result from long-ranged fluid-mediated interactions between swimming particles. This paper provides a general introduction to a number of recent investigations on these systems based on a continuum mean-field description of hydrodynamic interactions. A basic kinetic model is presented in detail, and an overview of its applications to the analysis of coherent motions and pattern formation, chemotactic interactions, and the effective rheology in active suspensions, is given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that a very similar model was also proposed independently and around the same time by Subramanian and Koch [47].
 
Literatur
[1].
Zurück zum Zitat Aditi Simha R, Ramaswamy S (2002) Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys Rev Lett 89:058101CrossRef Aditi Simha R, Ramaswamy S (2002) Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys Rev Lett 89:058101CrossRef
[2].
Zurück zum Zitat Alizadeh Pahlavan A, Saintillan D (2011) Instability regimes in flowing suspensions of swimming micro-organisms. Phys Fluids 23:011901CrossRef Alizadeh Pahlavan A, Saintillan D (2011) Instability regimes in flowing suspensions of swimming micro-organisms. Phys Fluids 23:011901CrossRef
[3].
Zurück zum Zitat Ezhilan B, Alizadeh Pahlavan A, Saintillan D (2012) Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria. (under consideration) Ezhilan B, Alizadeh Pahlavan A, Saintillan D (2012) Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria. (under consideration)
[4].
Zurück zum Zitat Aranson IS, Sokolov A, Kessler JO, Goldstein RE (2007) Model for dynamical coherence in thin films of self-propelled micro-organisms. Phys Rev E 75:040901CrossRef Aranson IS, Sokolov A, Kessler JO, Goldstein RE (2007) Model for dynamical coherence in thin films of self-propelled micro-organisms. Phys Rev E 75:040901CrossRef
[5].
Zurück zum Zitat Bartolo D, Lauga E (2010) Shaking-induced motility in suspensions of soft active particles. Phys Rev E 81:026312CrossRef Bartolo D, Lauga E (2010) Shaking-induced motility in suspensions of soft active particles. Phys Rev E 81:026312CrossRef
[6].
Zurück zum Zitat Baskaran A, Marchetti MC (2009) Statistical mechanics and hydrodynamics of bacterial suspensions. Proc Natl Acad Sci USA 106:15567CrossRef Baskaran A, Marchetti MC (2009) Statistical mechanics and hydrodynamics of bacterial suspensions. Proc Natl Acad Sci USA 106:15567CrossRef
[7].
[8].
Zurück zum Zitat Bearon RN, Pedley TJ (2000) Modelling run-and-tumble chemotaxis in a shear flow. Bull Math Biol 62:775–791CrossRef Bearon RN, Pedley TJ (2000) Modelling run-and-tumble chemotaxis in a shear flow. Bull Math Biol 62:775–791CrossRef
[9].
Zurück zum Zitat Berg HC (1983) Random walks in biology. Princeton University Press, Princeton Berg HC (1983) Random walks in biology. Princeton University Press, Princeton
[10].
[11].
Zurück zum Zitat Cisneros LH, Cortez R, Dombrowski C, Goldstein RE, Kessler JO (2007) Fluid dynamics of self-propelled micro-organisms, from individuals to concentrated populations. Exp Fluid 43:737CrossRef Cisneros LH, Cortez R, Dombrowski C, Goldstein RE, Kessler JO (2007) Fluid dynamics of self-propelled micro-organisms, from individuals to concentrated populations. Exp Fluid 43:737CrossRef
[12].
Zurück zum Zitat Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York
[13].
Zurück zum Zitat Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO (2004) Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett 93:098103CrossRef Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO (2004) Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett 93:098103CrossRef
[14].
Zurück zum Zitat Drescher K, Goldstein RE, Michel N, Polin M, Tuval I (2010) Direct measurement of the flow field around swimming microorganisms. Phys Rev Lett 105:168101CrossRef Drescher K, Goldstein RE, Michel N, Polin M, Tuval I (2010) Direct measurement of the flow field around swimming microorganisms. Phys Rev Lett 105:168101CrossRef
[15].
Zurück zum Zitat Giomi L, Liverpool TB, Marchetti MC (2010) Sheared active fluids: thickening, thinning, and vanishing viscosity. Phys Rev E 81:051908MathSciNetCrossRef Giomi L, Liverpool TB, Marchetti MC (2010) Sheared active fluids: thickening, thinning, and vanishing viscosity. Phys Rev E 81:051908MathSciNetCrossRef
[16].
Zurück zum Zitat Guasto JS, Johnson KA, Gollub JP (2010) Oscillatory flows induced by microorganisms swimming in two-dimensions. Phys Rev Lett 105:168102CrossRef Guasto JS, Johnson KA, Gollub JP (2010) Oscillatory flows induced by microorganisms swimming in two-dimensions. Phys Rev Lett 105:168102CrossRef
[17].
Zurück zum Zitat Haines BM, Sokolov A, Aranson IS, Berlyand L, Karpeev DA (2009) Three-dimensional model for the effective viscosity of bacterial suspensions. Phys Rev E 80:041922CrossRef Haines BM, Sokolov A, Aranson IS, Berlyand L, Karpeev DA (2009) Three-dimensional model for the effective viscosity of bacterial suspensions. Phys Rev E 80:041922CrossRef
[18].
Zurück zum Zitat Hatwalne Y, Ramaswamy S, Rao M, Simha RA (2004) Rheology of active-particle suspensions. Phys Rev Lett 92:118101CrossRef Hatwalne Y, Ramaswamy S, Rao M, Simha RA (2004) Rheology of active-particle suspensions. Phys Rev Lett 92:118101CrossRef
[19].
Zurück zum Zitat Hernández-Ortiz JP, Stoltz CG, Graham MD (2005) Transport and collective dynamics in suspensions of confined self-propelled particles. Phys Rev Lett 95:204501CrossRef Hernández-Ortiz JP, Stoltz CG, Graham MD (2005) Transport and collective dynamics in suspensions of confined self-propelled particles. Phys Rev Lett 95:204501CrossRef
[20].
Zurück zum Zitat Hernández-Ortiz JP, Underhill PT, Graham MD (2007) Dynamics of confined suspensions of swimming particles. J Phys Condens Matter 21:204107CrossRef Hernández-Ortiz JP, Underhill PT, Graham MD (2007) Dynamics of confined suspensions of swimming particles. J Phys Condens Matter 21:204107CrossRef
[21].
Zurück zum Zitat Hinch EJ, Leal LG (1976) Constitute equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J Fluid Mech 76:187–208MATHCrossRef Hinch EJ, Leal LG (1976) Constitute equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J Fluid Mech 76:187–208MATHCrossRef
[23].
Zurück zum Zitat Ishikawa T, Pedley TJ (2007) The rheology of a semi-dilute suspension of swimming model micro-organisms. J Fluid Mech 588:399–435MathSciNetMATH Ishikawa T, Pedley TJ (2007) The rheology of a semi-dilute suspension of swimming model micro-organisms. J Fluid Mech 588:399–435MathSciNetMATH
[24].
Zurück zum Zitat Ishikawa T, Pedley TJ (2007) Diffusion of swimming model microorganisms in a semi-dilute suspension. J Fluid Mech 588:437MathSciNetMATH Ishikawa T, Pedley TJ (2007) Diffusion of swimming model microorganisms in a semi-dilute suspension. J Fluid Mech 588:437MathSciNetMATH
[25].
[26].
Zurück zum Zitat Kim MJ, Breuer KS (2004) Enhanced diffusion due to motile bacteria. Phys Fluids 16:L78CrossRef Kim MJ, Breuer KS (2004) Enhanced diffusion due to motile bacteria. Phys Fluids 16:L78CrossRef
[27].
[28].
Zurück zum Zitat Leptos KC, Guasto JS, Gollub JP, Pesci AI, Goldstein RE (2009) Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys Rev Lett 103:198103CrossRef Leptos KC, Guasto JS, Gollub JP, Pesci AI, Goldstein RE (2009) Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys Rev Lett 103:198103CrossRef
[29].
Zurück zum Zitat Mendelson NH, Bourque A, Wilkening K, Anderson KR, Watkins JC (1999) Organized cell swimming motions in Bacilus subtilis colonies: patterns of short-lived whirls and jets. J Bacteriol 181:600 Mendelson NH, Bourque A, Wilkening K, Anderson KR, Watkins JC (1999) Organized cell swimming motions in Bacilus subtilis colonies: patterns of short-lived whirls and jets. J Bacteriol 181:600
[30].
Zurück zum Zitat Miño G, Mallouk TE, Darnige T, Hoyos M, Dauchet J, Dunstan J, Soto R, Wang Y, Rousselet A, Clement E (2011) Enhanced diffusion due to active swimmers at a solid surface. Phys Rev Lett 106:048102CrossRef Miño G, Mallouk TE, Darnige T, Hoyos M, Dauchet J, Dunstan J, Soto R, Wang Y, Rousselet A, Clement E (2011) Enhanced diffusion due to active swimmers at a solid surface. Phys Rev Lett 106:048102CrossRef
[31].
Zurück zum Zitat Mishra S, Baskaran A, Marchetti MC (2010) Fluctuations and pattern formation in self-propelled particles. Phys Rev E 81:061916CrossRef Mishra S, Baskaran A, Marchetti MC (2010) Fluctuations and pattern formation in self-propelled particles. Phys Rev E 81:061916CrossRef
[33].
Zurück zum Zitat Pedley TJ, Kessler JO (1992) Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech 24:313358CrossRef Pedley TJ, Kessler JO (1992) Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech 24:313358CrossRef
[34].
[35].
Zurück zum Zitat Rafaï S, Jibuti L, Peyla P (2010) Viscosity of microswimmer suspensions. Phys Rev Lett 104:098102CrossRef Rafaï S, Jibuti L, Peyla P (2010) Viscosity of microswimmer suspensions. Phys Rev Lett 104:098102CrossRef
[36].
Zurück zum Zitat Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 19:365CrossRef Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 19:365CrossRef
[37].
Zurück zum Zitat Saintillan D (2010) Extensional rheology of active suspensions. Phys Rev E 81:056307CrossRef Saintillan D (2010) Extensional rheology of active suspensions. Phys Rev E 81:056307CrossRef
[38].
Zurück zum Zitat Saintillan D (2010) The dilute rheology of swimming suspensions: a simple kinetic model. Exp Mech 50:1275–1281CrossRef Saintillan D (2010) The dilute rheology of swimming suspensions: a simple kinetic model. Exp Mech 50:1275–1281CrossRef
[39].
Zurück zum Zitat Saintillan D (2010) A quantitative look into microorganism hydrodynamics. Physics 3:84CrossRef Saintillan D (2010) A quantitative look into microorganism hydrodynamics. Physics 3:84CrossRef
[40].
Zurück zum Zitat Saintillan D, Shelley MJ (2007) Orientational order and instabilities in suspensions of self-locomoting rods. Phys Rev Lett 99:058102CrossRef Saintillan D, Shelley MJ (2007) Orientational order and instabilities in suspensions of self-locomoting rods. Phys Rev Lett 99:058102CrossRef
[41].
Zurück zum Zitat Saintillan D, Shelley MJ (2008) Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations. Phys Rev Lett 100:178103CrossRef Saintillan D, Shelley MJ (2008) Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations. Phys Rev Lett 100:178103CrossRef
[42].
Zurück zum Zitat Saintillan D, Shelley MJ (2008) Instabilities, pattern formation, and mixing in active suspensions. Phys Fluids 20:123304CrossRef Saintillan D, Shelley MJ (2008) Instabilities, pattern formation, and mixing in active suspensions. Phys Fluids 20:123304CrossRef
[43].
Zurück zum Zitat Saintillan D, Shelley MJ (2012) Emergence of coherent structures and large-scale flows in motile suspensions. J R Soc Interface 9:571CrossRef Saintillan D, Shelley MJ (2012) Emergence of coherent structures and large-scale flows in motile suspensions. J R Soc Interface 9:571CrossRef
[44].
Zurück zum Zitat Sokolov A, Aranson IS (2009) Reduction of viscosity in suspension of swimming bacteria. Phys Rev Lett 103:148101CrossRef Sokolov A, Aranson IS (2009) Reduction of viscosity in suspension of swimming bacteria. Phys Rev Lett 103:148101CrossRef
[45].
Zurück zum Zitat Sokolov A, Aranson IS, Kessler JO, Goldstein RE (2007) Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett 98:158102CrossRef Sokolov A, Aranson IS, Kessler JO, Goldstein RE (2007) Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett 98:158102CrossRef
[46].
Zurück zum Zitat Sokolov A, Golstein RE, Feldchtein FI, Aranson IS (2009) Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys Rev E 80:031903CrossRef Sokolov A, Golstein RE, Feldchtein FI, Aranson IS (2009) Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys Rev E 80:031903CrossRef
[47].
[48].
Zurück zum Zitat Wolgemuth CW (2008) Collective swimming and the dynamics of bacterial turbulence. Biophys J 95:1564–1574CrossRef Wolgemuth CW (2008) Collective swimming and the dynamics of bacterial turbulence. Biophys J 95:1564–1574CrossRef
[49].
Zurück zum Zitat Wu X-L, Libchaber A (2000) Particle diffusion in a quasi two-dimensional bacterial bath. Phys Rev Lett 84:30173020 Wu X-L, Libchaber A (2000) Particle diffusion in a quasi two-dimensional bacterial bath. Phys Rev Lett 84:30173020
Metadaten
Titel
Kinetic Models for Biologically Active Suspensions
verfasst von
David Saintillan
Copyright-Jahr
2012
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3997-4_4