Skip to main content
Erschienen in: Journal of Materials Science 13/2017

29.03.2017 | Ceramics

Kinetic study of the magnesium oxychloride cement cure reaction

verfasst von: Roque Góchez, Jim Wambaugh, Brett Rochner, Christopher L. Kitchens

Erschienen in: Journal of Materials Science | Ausgabe 13/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnesium oxychloride (MOC) is a ceramic material with significant fire-resistant properties and growing potential as an alternative building material for passive fire protection systems. The present study examined the magnesium oxychloride 5-phase cure reaction at temperatures from 35 to 55 °C using time-resolved quantitative X-ray diffraction and differential scanning calorimetry to monitor kinetics. The reaction was characterized as a two-step process: dissolution of magnesium oxide followed by crystallization of magnesium oxychloride from the solvated state. With stoichiometric proportions, 37% of the MgO dissolves before the onset of crystallization at a critical amorphous concentration. A maximum crystallinity of 82–84% was achieved for each temperature. Assuming first-order kinetics for both MgO dissolution and MOC crystallization, a kinetic model predicts 42.4 and 26.1 kJ/mol for dissolution and crystallization activation energies, respectively. This model was applied to pilot-scale production and accurately predicts the cure reaction time as a function of cure temperature. In an alternative approach to modeling the cure reaction, the Avrami nucleation and growth model was fit to calorimetric measurements. This model predicts diffusion-controlled, one-dimensional growth with an activation energy of 72.4 kJ/mol, which accounts for both dissolution and crystallization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Policastro PP, Tarneja RS (1991) Zinc-containing magnesium oxychloride cements providing fire resistance and an extended pot-life. Patent WO 1991018072 A1 Policastro PP, Tarneja RS (1991) Zinc-containing magnesium oxychloride cements providing fire resistance and an extended pot-life. Patent WO 1991018072 A1
2.
Zurück zum Zitat Thompson H (1973) Magnesium oxychloride fireproofing. Patent US3778304 A Thompson H (1973) Magnesium oxychloride fireproofing. Patent US3778304 A
3.
Zurück zum Zitat Li ZJ, Chau CK (2007) Influence of molar ratios on properties of magnesium oxychloride cement. Cem Concr Res 37(6):866–870CrossRef Li ZJ, Chau CK (2007) Influence of molar ratios on properties of magnesium oxychloride cement. Cem Concr Res 37(6):866–870CrossRef
4.
Zurück zum Zitat Walling SA, Provis JL (2016) Magnesia-based cements: A journey of 150 years, and cements for the future? Chem Rev 116(7):4170–4204CrossRef Walling SA, Provis JL (2016) Magnesia-based cements: A journey of 150 years, and cements for the future? Chem Rev 116(7):4170–4204CrossRef
5.
Zurück zum Zitat Tan YN, Liu Y, Grover L (2014) Effect of phosphoric acid on the properties of magnesium oxychloride cement as a biomaterial. Cem Concr Res 56:69–74CrossRef Tan YN, Liu Y, Grover L (2014) Effect of phosphoric acid on the properties of magnesium oxychloride cement as a biomaterial. Cem Concr Res 56:69–74CrossRef
6.
Zurück zum Zitat Makul N, Agrawal D (2012) Comparison of the microstructure and compressive strength of Type 1 Portland cement paste between accelerated curing methods by microwave energy and autoclaving, and a saturated-lime deionized water curing method. J Ceram Process Res 13(2):174–177 Makul N, Agrawal D (2012) Comparison of the microstructure and compressive strength of Type 1 Portland cement paste between accelerated curing methods by microwave energy and autoclaving, and a saturated-lime deionized water curing method. J Ceram Process Res 13(2):174–177
7.
Zurück zum Zitat Feigin ME, Choi TS (2011) Magnesium oxide-based construction board. US Patent US7998547 B2 Feigin ME, Choi TS (2011) Magnesium oxide-based construction board. US Patent US7998547 B2
8.
Zurück zum Zitat Sugimoto K, Dinnebier RE, Schlecht T (2007) Structure determination of Mg3(OH)5 Cl·4H2O(F5 phase) from laboratory powder diffraction data and its impact on the analysis of problematic magnesia floors. Acta Crystallogr Sect B-Struct Sci 63:805–811CrossRef Sugimoto K, Dinnebier RE, Schlecht T (2007) Structure determination of Mg3(OH)5 Cl·4H2O(F5 phase) from laboratory powder diffraction data and its impact on the analysis of problematic magnesia floors. Acta Crystallogr Sect B-Struct Sci 63:805–811CrossRef
9.
Zurück zum Zitat Ramachandran VS (2002) Handbook of thermal analysis of construction materials. Elsevier Science, Amsterdam Ramachandran VS (2002) Handbook of thermal analysis of construction materials. Elsevier Science, Amsterdam
10.
Zurück zum Zitat Beckett W, Abraham J, Becklake M, Christiani D, Cowie R, Davis G, Jones R, Kreiss K, Parker J, Wagner G (1997) Adverse effects of crystalline silica exposure. Am J Respir Crit Care Med 155(2):761–768CrossRef Beckett W, Abraham J, Becklake M, Christiani D, Cowie R, Davis G, Jones R, Kreiss K, Parker J, Wagner G (1997) Adverse effects of crystalline silica exposure. Am J Respir Crit Care Med 155(2):761–768CrossRef
11.
Zurück zum Zitat Odler I (2000) Special inorganic cements. Taylor & Francis Group, London Odler I (2000) Special inorganic cements. Taylor & Francis Group, London
12.
Zurück zum Zitat Deng DH (2003) The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement. Cem Concr Res 33(9):1311–1317CrossRef Deng DH (2003) The mechanism for soluble phosphates to improve the water resistance of magnesium oxychloride cement. Cem Concr Res 33(9):1311–1317CrossRef
13.
Zurück zum Zitat Lutterotti L, Ceccato R, Dal Maschio R, Pagani E (1998) Quantitative analysis of silicate glass in ceramic materials by the Rietveld method. Mater Sci Forum 278–281:87–92CrossRef Lutterotti L, Ceccato R, Dal Maschio R, Pagani E (1998) Quantitative analysis of silicate glass in ceramic materials by the Rietveld method. Mater Sci Forum 278–281:87–92CrossRef
14.
Zurück zum Zitat Sugimoto K, Dinnebier RE, Schlecht T (2006) Chlorartinite, a volcanic exhalation product also found in industrial magnesia screed. J Appl Crystallogr 39:739–744CrossRef Sugimoto K, Dinnebier RE, Schlecht T (2006) Chlorartinite, a volcanic exhalation product also found in industrial magnesia screed. J Appl Crystallogr 39:739–744CrossRef
15.
Zurück zum Zitat Maravelaki-Kalaitzaki P, Moraitou G (1999) Sorel’s cement mortars: decay susceptibility and effect on Pentelic marble. Cem Concr Res 29(12):1929–1935CrossRef Maravelaki-Kalaitzaki P, Moraitou G (1999) Sorel’s cement mortars: decay susceptibility and effect on Pentelic marble. Cem Concr Res 29(12):1929–1935CrossRef
16.
Zurück zum Zitat Deng DH, Zhang CM (1999) The formation mechanism of the hydrate phases in magnesium oxychloride cement. Cem Concr Res 29(9):1365–1371CrossRef Deng DH, Zhang CM (1999) The formation mechanism of the hydrate phases in magnesium oxychloride cement. Cem Concr Res 29(9):1365–1371CrossRef
17.
Zurück zum Zitat Ved E, Zharov E, Phong H (1976) Mechanism of magnesium oxychloride formation during the hardening of magnesium oxychloride cement. Zh Prikl Khim 49(10):2154–2158 Ved E, Zharov E, Phong H (1976) Mechanism of magnesium oxychloride formation during the hardening of magnesium oxychloride cement. Zh Prikl Khim 49(10):2154–2158
18.
Zurück zum Zitat Bilinski H, Matković B, MAŽURANIĆ C, ŽUNIĆ TB (1984) The formation of magnesium oxychloride phases in the systems MgO–MgCl2–H2O and NaOH–MgCl2–H2O. J Am Ceram Soc 67(4):266–269CrossRef Bilinski H, Matković B, MAŽURANIĆ C, ŽUNIĆ TB (1984) The formation of magnesium oxychloride phases in the systems MgO–MgCl2–H2O and NaOH–MgCl2–H2O. J Am Ceram Soc 67(4):266–269CrossRef
19.
Zurück zum Zitat Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk HR (2007) Rietveld texture analysis from diffraction images. Z Kristallogr 26:5 Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk HR (2007) Rietveld texture analysis from diffraction images. Z Kristallogr 26:5
20.
Zurück zum Zitat Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya NR, Moeck P, Downs RT, LeBail A (2012) Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40:D420–D427CrossRef Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya NR, Moeck P, Downs RT, LeBail A (2012) Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40:D420–D427CrossRef
21.
Zurück zum Zitat Sglavo VM, De Genua F, Conci A, Ceccato R, Cavallini R (2011) Influence of curing temperature on the evolution of magnesium oxychloride cement. J Mater Sci 46(20):6726–6733. doi:10.1007/s10853-011-5628-z CrossRef Sglavo VM, De Genua F, Conci A, Ceccato R, Cavallini R (2011) Influence of curing temperature on the evolution of magnesium oxychloride cement. J Mater Sci 46(20):6726–6733. doi:10.​1007/​s10853-011-5628-z CrossRef
22.
Zurück zum Zitat Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2(03):154CrossRef Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2(03):154CrossRef
24.
Zurück zum Zitat Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7(12):1103–1112CrossRef Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7(12):1103–1112CrossRef
25.
Zurück zum Zitat Liu F, Sommer F, Bos C, Mittemeijer E (2007) Analysis of solid state phase transformation kinetics: models and recipes. Int Mater Rev 52(4):193–212CrossRef Liu F, Sommer F, Bos C, Mittemeijer E (2007) Analysis of solid state phase transformation kinetics: models and recipes. Int Mater Rev 52(4):193–212CrossRef
26.
Zurück zum Zitat Thomas JJ, Musso S, Prestini I (2014) Kinetics and activation energy of magnesium oxide hydration. J Am Ceram Soc 97(1):275–282CrossRef Thomas JJ, Musso S, Prestini I (2014) Kinetics and activation energy of magnesium oxide hydration. J Am Ceram Soc 97(1):275–282CrossRef
Metadaten
Titel
Kinetic study of the magnesium oxychloride cement cure reaction
verfasst von
Roque Góchez
Jim Wambaugh
Brett Rochner
Christopher L. Kitchens
Publikationsdatum
29.03.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1013-x

Weitere Artikel der Ausgabe 13/2017

Journal of Materials Science 13/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.