2019 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
We provided (PNSE’2014) expressions for free choice nets having distributed choice property which makes the nets direct product representable. In a recent work (PNSE’2016), we gave equivalent syntax for a larger class of free choice nets obtained by dropping distributed choice property.
In both these works, the classes of free choice nets were restricted by a product condition on the set of final markings. In this paper we do away with this restriction and give expressions for the resultant classes of nets which correspond to free choice synchronous products and Zielonka automata. For free choice nets with distributed choice property, we give an alternative characterization using properties checkable in polynomial time.
Free choice nets we consider are 1-bounded, S-coverable, and are labelled with distributed alphabets, where S-components of the associated S-cover respect the given alphabet distribution.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996) MathSciNetCrossRef Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions. Theoret. Comput. Sci.
155(2), 291–319 (1996)
MathSciNetCrossRef
2.
Zurück zum Zitat Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964) MathSciNetCrossRef Brzozowski, J.A.: Derivatives of regular expressions. J. ACM
11(4), 481–494 (1964)
MathSciNetCrossRef
3.
Zurück zum Zitat Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New York (1995) CrossRef Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New York (1995)
CrossRef
4.
Zurück zum Zitat Garg, V.K., Ragunath, M.: Concurrent regular expressions and their relationship to petri nets. Theoret. Comput. Sci. 96(2), 285–304 (1992) MathSciNetCrossRef Garg, V.K., Ragunath, M.: Concurrent regular expressions and their relationship to petri nets. Theoret. Comput. Sci.
96(2), 285–304 (1992)
MathSciNetCrossRef
5.
Zurück zum Zitat Grabowski, J.: On partial languages. Fundam. Inform. 4(2), 427–498 (1981) MathSciNetMATH Grabowski, J.: On partial languages. Fundam. Inform.
4(2), 427–498 (1981)
MathSciNetMATH
6.
Zurück zum Zitat Hack, M.H.T.: Analysis of production schemata by Petri nets. Project Mac Report TR-94, MIT (1972) Hack, M.H.T.: Analysis of production schemata by Petri nets. Project Mac Report TR-94, MIT (1972)
7.
Zurück zum Zitat Iordache, M.V., Antsaklis, P.J.: The ACTS software and its supervisory control framework. In: Proceedings Conference on Decision and Control, CDC, pp. 7238–7243. IEEE (2012) Iordache, M.V., Antsaklis, P.J.: The ACTS software and its supervisory control framework. In: Proceedings Conference on Decision and Control, CDC, pp. 7238–7243. IEEE (2012)
8.
Zurück zum Zitat Jantzen, M.: Language theory of Petri nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 397–412. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2_15 CrossRef Jantzen, M.: Language theory of Petri nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 397–412. Springer, Heidelberg (1987).
https://doi.org/10.1007/978-3-540-47919-2_15
CrossRef
9.
Zurück zum Zitat Lodaya, K.: Product automata and process algebra. In: SEFM. IEEE (2006) Lodaya, K.: Product automata and process algebra. In: SEFM. IEEE (2006)
10.
Zurück zum Zitat Lodaya, K., Mukund, M., Phawade, R.: Kleene theorems for product systems. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 235–247. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22600-7_19 CrossRefMATH Lodaya, K., Mukund, M., Phawade, R.: Kleene theorems for product systems. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds.) DCFS 2011. LNCS, vol. 6808, pp. 235–247. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22600-7_19
CrossRefMATH
11.
Zurück zum Zitat Mirkin, B.G.: An algorithm for constructing a base in a language of regular expressions. Eng. Cybern. 5, 110–116 (1966) Mirkin, B.G.: An algorithm for constructing a base in a language of regular expressions. Eng. Cybern.
5, 110–116 (1966)
12.
Zurück zum Zitat Mukund, M.: Automata on distributed alphabets. In: D’Souza, D., Shankar, P. (eds.) Modern Applications of Automata Theory. World Scientific (2011) Mukund, M.: Automata on distributed alphabets. In: D’Souza, D., Shankar, P. (eds.) Modern Applications of Automata Theory. World Scientific (2011)
13.
Zurück zum Zitat Petersen, J.L.: Computation sequence sets. J. Comput. Syst. Sci. 13(1), 1–24 (1976) MathSciNetCrossRef Petersen, J.L.: Computation sequence sets. J. Comput. Syst. Sci.
13(1), 1–24 (1976)
MathSciNetCrossRef
14.
Zurück zum Zitat Phawade, R.: Labelled free choice nets, finite product automata, and expressions. Ph.D. thesis, Homi Bhabha National Institute (2015) Phawade, R.: Labelled free choice nets, finite product automata, and expressions. Ph.D. thesis, Homi Bhabha National Institute (2015)
15.
Zurück zum Zitat Phawade, R.: Kleene theorems for labelled free choice nets without distributed choice. In: Cabac, L., Kristensen, L.M., Rölke, H. (eds.) Proceedings of PNSE. CEUR Workshop Proceedings, vol. 1591, pp. 132–152. CEUR-WS.org (2016) Phawade, R.: Kleene theorems for labelled free choice nets without distributed choice. In: Cabac, L., Kristensen, L.M., Rölke, H. (eds.) Proceedings of PNSE. CEUR Workshop Proceedings, vol. 1591, pp. 132–152. CEUR-WS.org (2016)
16.
Zurück zum Zitat Phawade, R.: Kleene theorems free choice nets labelled with distributed alphabets. In: Daniel Moldt, E.K., Rölke, H. (eds.) Proceedings of PNSE. CEUR Workshop Proceedings, vol. 2138, pp. 77–98. CEUR-WS.org (2018) Phawade, R.: Kleene theorems free choice nets labelled with distributed alphabets. In: Daniel Moldt, E.K., Rölke, H. (eds.) Proceedings of PNSE. CEUR Workshop Proceedings, vol. 2138, pp. 77–98. CEUR-WS.org (2018)
17.
Zurück zum Zitat Phawade, R.: Kleene Theorems for Free Choice Nets Labelled with Distributed Alphabets. arXiv e-prints arXiv:1907.01168, July 2019 Phawade, R.: Kleene Theorems for Free Choice Nets Labelled with Distributed Alphabets. arXiv e-prints
arXiv:1907.01168, July 2019
18.
Zurück zum Zitat Phawade, R., Lodaya, K.: Kleene theorems for labelled free choice nets. In: Moldt, D., Rölke, H. (eds.) Proceedings of PNSE. CEUR Workshop Proceedings, vol. 1160, pp. 75–89. CEUR-WS.org (2014) Phawade, R., Lodaya, K.: Kleene theorems for labelled free choice nets. In: Moldt, D., Rölke, H. (eds.) Proceedings of PNSE. CEUR Workshop Proceedings, vol. 1160, pp. 75–89. CEUR-WS.org (2014)
19.
Zurück zum Zitat Phawade, R., Lodaya, K.: Kleene theorems for synchronous products with matching. In: Koutny, M., Desel, J., Haddad, S. (eds.) Transactions on Petri Nets and Other Models of Concurrency X. LNCS, vol. 9410, pp. 84–108. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48650-4_5 CrossRef Phawade, R., Lodaya, K.: Kleene theorems for synchronous products with matching. In: Koutny, M., Desel, J., Haddad, S. (eds.) Transactions on Petri Nets and Other Models of Concurrency X. LNCS, vol. 9410, pp. 84–108. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48650-4_5
CrossRef
20.
Zurück zum Zitat Zielonka, W.: Notes on finite asynchronous automata. Inform. Theor. Appl. 21(2), 99–135 (1987) MathSciNetCrossRef Zielonka, W.: Notes on finite asynchronous automata. Inform. Theor. Appl.
21(2), 99–135 (1987)
MathSciNetCrossRef
- Titel
- Kleene Theorems for Free Choice Automata over Distributed Alphabets
- DOI
- https://doi.org/10.1007/978-3-662-60651-3_6
- Autor:
-
Ramchandra Phawade
- Verlag
- Springer Berlin Heidelberg
- Sequenznummer
- 6