Skip to main content

2020 | OriginalPaper | Buchkapitel

Knowledge-Enabled Diagnosis Assistant Based on Obstetric EMRs and Knowledge Graph

verfasst von : Kunli Zhang, Xu Zhao, Lei Zhuang, Qi Xie, Hongying Zan

Erschienen in: Chinese Computational Linguistics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The obstetric Electronic Medical Record (EMR) contains a large amount of medical data and health information. It plays a vital role in improving the quality of the diagnosis assistant service. In this paper, we treat the diagnosis assistant as a multi-label classification task and propose a Knowledge-Enabled Diagnosis Assistant (KEDA) model for the obstetric diagnosis assistant. We utilize the numerical information in EMRs and the external knowledge from Chinese Obstetric Knowledge Graph (COKG) to enhance the text representation of EMRs. Specifically, the bidirectional maximum matching method and similarity-based approach are used to obtain the entities set contained in EMRs and linked to the COKG. The final knowledge representation is obtained by a weight-based disease prediction algorithm, and it is fused with the text representation through a linear weighting method. Experiment results show that our approach can bring about +3.53 F1 score improvements upon the strong BERT baseline in the diagnosis assistant task.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Chen, G., Ye, D., Xing, Z., Chen, J., Cambria, E.: Ensemble application of convolutional and recurrent neural networks for multi-label text categorization. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2377–2383. IEEE (2017) Chen, G., Ye, D., Xing, Z., Chen, J., Cambria, E.: Ensemble application of convolutional and recurrent neural networks for multi-label text categorization. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2377–2383. IEEE (2017)
3.
Zurück zum Zitat Chen, J., Hu, Y., Liu, J., Xiao, Y., Jiang, H.: Deep short text classification with knowledge powered attention. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp 6252–6259 (2019) Chen, J., Hu, Y., Liu, J., Xiao, Y., Jiang, H.: Deep short text classification with knowledge powered attention. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp 6252–6259 (2019)
4.
Zurück zum Zitat China’s Ministry of Health: Basic specification of electronic medical records (trial). Technical Report 3 (2010) China’s Ministry of Health: Basic specification of electronic medical records (trial). Technical Report 3 (2010)
6.
7.
Zurück zum Zitat Gai, R.L., Gao, F., Duan, L.M., Sun, X.H., Li, H.Z.: Bidirectional maximal matching word segmentation algorithm with rules. In: Advanced Materials Research, vol. 926, pp. 3368–3372. Trans Tech Publ. (2014) Gai, R.L., Gao, F., Duan, L.M., Sun, X.H., Li, H.Z.: Bidirectional maximal matching word segmentation algorithm with rules. In: Advanced Materials Research, vol. 926, pp. 3368–3372. Trans Tech Publ. (2014)
8.
Zurück zum Zitat Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: Spanbert: improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguist. 8, 64–77 (2020)CrossRef Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: Spanbert: improving pre-training by representing and predicting spans. Trans. Assoc. Comput. Linguist. 8, 64–77 (2020)CrossRef
9.
Zurück zum Zitat Kurata, G., Xiang, B., Zhou, B.: Improved neural network-based multi-label classification with better initialization leveraging label co-occurrence. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 521–526 (2016) Kurata, G., Xiang, B., Zhou, B.: Improved neural network-based multi-label classification with better initialization leveraging label co-occurrence. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 521–526 (2016)
10.
Zurück zum Zitat Li, M., Clinton, G., Miao, Y., Gao, F.: Short text classification via knowledge powered attention with similarity matrix based CNN. arXiv preprint arXiv:2002.03350 (2020) Li, M., Clinton, G., Miao, Y., Gao, F.: Short text classification via knowledge powered attention with similarity matrix based CNN. arXiv preprint arXiv:​2002.​03350 (2020)
12.
Zurück zum Zitat Ma, H., Zhang, K., Zhao, Y.: Study on obstetric multi-label assisted diagnosis based on feature fusion. J. Chinese Inf. Process. 32(5), 128–136 (2018) Ma, H., Zhang, K., Zhao, Y.: Study on obstetric multi-label assisted diagnosis based on feature fusion. J. Chinese Inf. Process. 32(5), 128–136 (2018)
15.
Zurück zum Zitat Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding with unsupervised learning. Technical report, OpenAI (2018) Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding with unsupervised learning. Technical report, OpenAI (2018)
16.
Zurück zum Zitat Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333 (2011)MathSciNetCrossRef Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333 (2011)MathSciNetCrossRef
17.
18.
Zurück zum Zitat Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2010)CrossRef Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2010)CrossRef
19.
Zurück zum Zitat Vaswani, A., et al.: Attention is all you need. In: Advances in neural information processing systems, pp. 5998–6008 (2017) Vaswani, A., et al.: Attention is all you need. In: Advances in neural information processing systems, pp. 5998–6008 (2017)
20.
Zurück zum Zitat Yang, A., et al.: Enhancing pre-trained language representations with rich knowledge for machine reading comprehension. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2346–2357 (2019) Yang, A., et al.: Enhancing pre-trained language representations with rich knowledge for machine reading comprehension. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2346–2357 (2019)
21.
Zurück zum Zitat Yang, H.l., Yang, Z.: Effect of older pregnancy on maternal and fetal outcomes. Chinese J. Obstetric Emergency (Electr. Edn) 5(3), 129–135 (2016) Yang, H.l., Yang, Z.: Effect of older pregnancy on maternal and fetal outcomes. Chinese J. Obstetric Emergency (Electr. Edn) 5(3), 129–135 (2016)
22.
Zurück zum Zitat Yang, P., et al.: SGM: sequence generation model for multi-label classification, pp. 3915–3926 (2018) Yang, P., et al.: SGM: sequence generation model for multi-label classification, pp. 3915–3926 (2018)
23.
Zurück zum Zitat Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: Xlnet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, pp. 5754–5764 (2019) Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: Xlnet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, pp. 5754–5764 (2019)
24.
Zurück zum Zitat Zhang, K., Liu, C., Duan, X., Zhou, L., Zhao, Y., Zan, H.: Bert with enhanced layer for assistant diagnosis based on chinese obstetric EMRS. In: 2019 International Conference on Asian Language Processing (IALP), pp. 384–389. IEEE (2019) Zhang, K., Liu, C., Duan, X., Zhou, L., Zhao, Y., Zan, H.: Bert with enhanced layer for assistant diagnosis based on chinese obstetric EMRS. In: 2019 International Conference on Asian Language Processing (IALP), pp. 384–389. IEEE (2019)
25.
Zurück zum Zitat Zhang, K., Ma, H., Zhao, Y., Zan, H., Zhuang, L.: The comparative experimental study of multilabel classification for diagnosis assistant based on Chinese obstetric EMRS. J. Healthcare Eng. 2018 (2018) Zhang, K., Ma, H., Zhao, Y., Zan, H., Zhuang, L.: The comparative experimental study of multilabel classification for diagnosis assistant based on Chinese obstetric EMRS. J. Healthcare Eng. 2018 (2018)
26.
Zurück zum Zitat Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)CrossRef Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)CrossRef
27.
Zurück zum Zitat Zhang, M.L., Zhou, Z.H.: Ml-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)CrossRef Zhang, M.L., Zhou, Z.H.: Ml-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)CrossRef
Metadaten
Titel
Knowledge-Enabled Diagnosis Assistant Based on Obstetric EMRs and Knowledge Graph
verfasst von
Kunli Zhang
Xu Zhao
Lei Zhuang
Qi Xie
Hongying Zan
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-63031-7_32