Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

27.02.2020 | Original Article | Ausgabe 5/2020

International Journal of Machine Learning and Cybernetics 5/2020

Knowledge granularity based incremental attribute reduction for incomplete decision systems

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 5/2020
Autoren:
Chucai Zhang, Jianhua Dai, Jiaolong Chen
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update attribute reducts efficiently gets more and more attention. In the light of the variation about the number of objects, we focus on incremental attribute reduction approaches based on knowledge granularity which can be used to measure the uncertainty in incomplete decision systems. We first introduce incremental mechanisms to calculate knowledge granularity for incomplete decision systems when multiple objects vary dynamically. Then, incremental attribute reduction algorithms for incomplete decision systems when adding multiple objects and when deleting multiple objects are proposed respectively. Finally, comparative experiments on different real-life data sets are conducted to demonstrate the effectiveness and efficiency of the proposed incremental algorithms for updating attribute reducts with the variation of multiple objects in incomplete decision systems.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2020

International Journal of Machine Learning and Cybernetics 5/2020 Zur Ausgabe