Skip to main content
Erschienen in: Journal of Scientific Computing 2/2016

19.05.2016

Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection–Diffusion Equations

verfasst von: Dong Lu, Yong-Tao Zhang

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Krylov implicit integration factor (IIF) methods were developed in Chen and Zhang (J Comput Phys 230:4336–4352, 2011) for solving stiff reaction–diffusion equations on high dimensional unstructured meshes. The methods were further extended to solve stiff advection–diffusion–reaction equations in Jiang and Zhang (J Comput Phys 253:368–388, 2013). Recently we studied the computational power of Krylov subspace approximations on dealing with high dimensional problems. It was shown that the Krylov integration factor methods have linear computational complexity and are especially efficient for high dimensional convection–diffusion problems with anisotropic diffusions. In this paper, we combine the Krylov integration factor methods with sparse grid combination techniques and solve high spatial dimension convection–diffusion equations such as Fokker–Planck equations on sparse grids. Numerical examples are presented to show that significant computational times are saved by applying the Krylov integration factor methods on sparse grids.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147, 362–387 (1998)MathSciNetCrossRefMATH Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147, 362–387 (1998)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Briggs, W.L., Henson, V.E., and McCormick, S.F.: A multigrid tutorial. SIAM, (2000) Briggs, W.L., Henson, V.E., and McCormick, S.F.: A multigrid tutorial. SIAM, (2000)
4.
Zurück zum Zitat Chen, S., Zhang, Y.-T.: Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods. J. Comput. Phys. 230, 4336–4352 (2011)MathSciNetCrossRefMATH Chen, S., Zhang, Y.-T.: Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods. J. Comput. Phys. 230, 4336–4352 (2011)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Fokker, A.D.: Die mittlere energie rotierender elektrischer dipole im strahlungsfeld. Ann. Phys. 348, 810–820 (1914)CrossRef Fokker, A.D.: Die mittlere energie rotierender elektrischer dipole im strahlungsfeld. Ann. Phys. 348, 810–820 (1914)CrossRef
7.
Zurück zum Zitat Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comput. 13(5), 1236–1264 (1992)MathSciNetCrossRefMATH Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comput. 13(5), 1236–1264 (1992)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: Beauwens, R., de Groen, P. (eds.) Iterative Methods in Linear Algebra, pp. 263–281. North-Holland, Amsterdam (1992) Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: Beauwens, R., de Groen, P. (eds.) Iterative Methods in Linear Algebra, pp. 263–281. North-Holland, Amsterdam (1992)
9.
Zurück zum Zitat Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)MATH Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)MATH
10.
11.
12.
Zurück zum Zitat Jiang, T., Zhang, Y.-T.: Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection–diffusion-reaction equations. J. Comput. Phys. 253, 368–388 (2013)MathSciNetCrossRef Jiang, T., Zhang, Y.-T.: Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection–diffusion-reaction equations. J. Comput. Phys. 253, 368–388 (2013)MathSciNetCrossRef
13.
Zurück zum Zitat Jiang, T., Zhang, Y.-T.: Krylov single-step implicit integration factor WENO methods for advection–diffusion-reaction equations. J. Comput. Phys. 311, 22–44 (2016)MathSciNetCrossRef Jiang, T., Zhang, Y.-T.: Krylov single-step implicit integration factor WENO methods for advection–diffusion-reaction equations. J. Comput. Phys. 311, 22–44 (2016)MathSciNetCrossRef
14.
Zurück zum Zitat Ju, L., Liu, X., Leng, W.: Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete Contin. Dyn. Syst. Ser. B 19, 1667–1687 (2014)MathSciNetCrossRefMATH Ju, L., Liu, X., Leng, W.: Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete Contin. Dyn. Syst. Ser. B 19, 1667–1687 (2014)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62, 431–455 (2015)MathSciNetCrossRefMATH Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62, 431–455 (2015)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Kleefeld, B., Khaliq, A.Q.M., Wade, B.A.: An ETD Crank-Nicolson method for reaction-diffusion systems. Numer. Methods Partial Differ. Equ. 28, 1309–1335 (2012)MathSciNetCrossRefMATH Kleefeld, B., Khaliq, A.Q.M., Wade, B.A.: An ETD Crank-Nicolson method for reaction-diffusion systems. Numer. Methods Partial Differ. Equ. 28, 1309–1335 (2012)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Lastdrager, B., Koren, B., Verwer, J.: The sparse-grid combination technique applied to time-dependent advection problems. Appl. Numer. Math. 38, 377–401 (2001)MathSciNetCrossRefMATH Lastdrager, B., Koren, B., Verwer, J.: The sparse-grid combination technique applied to time-dependent advection problems. Appl. Numer. Math. 38, 377–401 (2001)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Lastdrager, B., Koren, B., Verwer, J.: Solution of time-dependent advection-diffusion problems with the sparse-grid combination technique and a rosenbrock solver. Comput. Methods Appl. Math. 1, 86–99 (2001)MathSciNetCrossRefMATH Lastdrager, B., Koren, B., Verwer, J.: Solution of time-dependent advection-diffusion problems with the sparse-grid combination technique and a rosenbrock solver. Comput. Methods Appl. Math. 1, 86–99 (2001)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Lu, D., Zhang, Y.-T.: Computational complexity study on Krylov integration factor WENO method for high spatial dimension convection–diffusion problems. J. Comput. Appl. Math. submitted, (2015) Lu, D., Zhang, Y.-T.: Computational complexity study on Krylov integration factor WENO method for high spatial dimension convection–diffusion problems. J. Comput. Appl. Math. submitted, (2015)
20.
Zurück zum Zitat Maday, Y., Patera, A.T., Ronquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5, 263–292 (1990)MathSciNetCrossRefMATH Maday, Y., Patera, A.T., Ronquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5, 263–292 (1990)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)MathSciNetCrossRefMATH Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)MathSciNetCrossRefMATH
22.
23.
Zurück zum Zitat Nie, Q., Wan, F., Zhang, Y.-T., Liu, X.-F.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227, 5238–5255 (2008)MathSciNetCrossRefMATH Nie, Q., Wan, F., Zhang, Y.-T., Liu, X.-F.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227, 5238–5255 (2008)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Planck, M.: Sitzber. Preuss. Akad. Wiss. (1917) p. 324 Planck, M.: Sitzber. Preuss. Akad. Wiss. (1917) p. 324
25.
Zurück zum Zitat Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications. Springer, Berlin (1996)CrossRefMATH Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications. Springer, Berlin (1996)CrossRefMATH
26.
Zurück zum Zitat Sjoberg, P., Lotstedt, P., Elf, J.: Fokker-planck approximation of the master equation in molecular biology. Comput. Visual Sci. 12, 37–50 (2009)MathSciNetCrossRef Sjoberg, P., Lotstedt, P., Elf, J.: Fokker-planck approximation of the master equation in molecular biology. Comput. Visual Sci. 12, 37–50 (2009)MathSciNetCrossRef
27.
Zurück zum Zitat Trefethen, L.N., Bau, D.: Numerical Linear Algebra, SIAM, (1997) Trefethen, L.N., Bau, D.: Numerical Linear Algebra, SIAM, (1997)
28.
Zurück zum Zitat Wang, D., Zhang, L., Nie, Q.: Array-representation integration factor method for high-dimensional systems. J. Comput. Phys. v258, 585–600 (2014)MathSciNetCrossRef Wang, D., Zhang, L., Nie, Q.: Array-representation integration factor method for high-dimensional systems. J. Comput. Phys. v258, 585–600 (2014)MathSciNetCrossRef
29.
Zurück zum Zitat Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg, Braunschweig (1991) Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg, Braunschweig (1991)
Metadaten
Titel
Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection–Diffusion Equations
verfasst von
Dong Lu
Yong-Tao Zhang
Publikationsdatum
19.05.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2016
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0216-7

Weitere Artikel der Ausgabe 2/2016

Journal of Scientific Computing 2/2016 Zur Ausgabe