Skip to main content
Erschienen in: Wireless Networks 3/2015

01.04.2015

Kuiper test and autoregressive model-based approach for wireless sensor network fault diagnosis

verfasst von: Xiaohang Jin, Tommy W. S. Chow, Yi Sun, Jihong Shan, Bill C. P. Lau

Erschienen in: Wireless Networks | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) have recently received increasing attention in the areas of defense and civil applications of sensor networks. Automatic WSN fault detection and diagnosis is essential to assure system’s reliability. Proactive WSNs fault diagnosis approaches use embedded functions scanning sensor node periodically for monitoring the health condition of WSNs. But this approach may speed up the depletion of limited energy in each sensor node. Thus, there is an increasing interest in using passive diagnosis approach. In this paper, WSN anomaly detection model based on autoregressive (AR) model and Kuiper test-based passive diagnosis is proposed. First, AR model with optimal order is developed based on the normal working condition of WSNs using Akaike information criterion. The AR model then acts as a filter to process the future incoming signal from different unknown conditions. A health indicator based on Kuiper test, which is used to test the similarity between the training error of normal condition and residual of test conditions, is derived for indicating the health conditions of WSN. In this study, synthetic WSNs data under different cases/conditions were generated and used for validating the approach. Experimental results show that the proposed approach could differentiate WSNs normal conditions from faulty conditions. At last, the overall results presented in this paper demonstrate that our approach is effective for performing WSNs anomalies detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393–422.CrossRef Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393–422.CrossRef
2.
Zurück zum Zitat Megerian, S., Koushanfar, F., Qu, G., Veltri, G., & Potkonjak, M. (2002). Exposure in wireless sensor networks: theory and practical solutions. Wireless Networks, 8, 443–454.CrossRefMATH Megerian, S., Koushanfar, F., Qu, G., Veltri, G., & Potkonjak, M. (2002). Exposure in wireless sensor networks: theory and practical solutions. Wireless Networks, 8, 443–454.CrossRefMATH
3.
Zurück zum Zitat Ni, K., & Pottie, G. (2012). Sensor network data fault detection with maximum a posteriori selection and Bayesian modeling. ACM Transactions on Sensor Networks, 8(3), 23:1–23:21.CrossRef Ni, K., & Pottie, G. (2012). Sensor network data fault detection with maximum a posteriori selection and Bayesian modeling. ACM Transactions on Sensor Networks, 8(3), 23:1–23:21.CrossRef
4.
Zurück zum Zitat Yu, M., Mokhtar, H., & Merabti, M. (2007). Fault management in wireless sensor networks. IEEE Wireless Communications, 14(6), 13–19.CrossRef Yu, M., Mokhtar, H., & Merabti, M. (2007). Fault management in wireless sensor networks. IEEE Wireless Communications, 14(6), 13–19.CrossRef
5.
Zurück zum Zitat Liu, W., Zhang, Y., Lou, W., & Fang, Y. (2006). A robust and energy-efficient data dissemination framework for wireless sensor networks. Wireless Networks, 12, 465–479.CrossRef Liu, W., Zhang, Y., Lou, W., & Fang, Y. (2006). A robust and energy-efficient data dissemination framework for wireless sensor networks. Wireless Networks, 12, 465–479.CrossRef
6.
Zurück zum Zitat Rosberg, Z., Liu, R. P., Dinh, T. L., Dong, Y. F., & Jha, S. (2010). Statistical reliability for energy efficient data transport in wireless sensor networks. Wireless Networks, 16, 1913–1927.CrossRef Rosberg, Z., Liu, R. P., Dinh, T. L., Dong, Y. F., & Jha, S. (2010). Statistical reliability for energy efficient data transport in wireless sensor networks. Wireless Networks, 16, 1913–1927.CrossRef
7.
Zurück zum Zitat Anisi, M. H., Abdullah, A. H., & Razak, S. A. (2013). Energy-efficient and reliable data delivery in wireless sensor networks. Wireless Networks, 19, 495–505.CrossRef Anisi, M. H., Abdullah, A. H., & Razak, S. A. (2013). Energy-efficient and reliable data delivery in wireless sensor networks. Wireless Networks, 19, 495–505.CrossRef
8.
Zurück zum Zitat Sung, T.-W., Wu, T.-T., Yang, C.-S., & Huang, Y.-M. (2010). Reliable data broadcast for Zigbee wireless sensor networks. International Journal on Smart Sensing and Intelligent Systems, 3(3), 504–520. Sung, T.-W., Wu, T.-T., Yang, C.-S., & Huang, Y.-M. (2010). Reliable data broadcast for Zigbee wireless sensor networks. International Journal on Smart Sensing and Intelligent Systems, 3(3), 504–520.
10.
Zurück zum Zitat AboElFotoh, H. M. F., Iyengar, S. S., & Chakrabarty, K. (2005). Computing reliability and message delay for cooperative wireless distributed sensor networks subject to random failures. IEEE Transactions on Reliability, 54(1), 145–155.CrossRef AboElFotoh, H. M. F., Iyengar, S. S., & Chakrabarty, K. (2005). Computing reliability and message delay for cooperative wireless distributed sensor networks subject to random failures. IEEE Transactions on Reliability, 54(1), 145–155.CrossRef
11.
Zurück zum Zitat AboElFotoh, H. M. F., Elmallah, E., & Hassanein, H. (2006). On the reliability of wireless sensor networks. In IEEE international conference on communications (pp. 3455–3460). AboElFotoh, H. M. F., Elmallah, E., & Hassanein, H. (2006). On the reliability of wireless sensor networks. In IEEE international conference on communications (pp. 3455–3460).
12.
Zurück zum Zitat Jin, X., Ma, E. W. M., Cheng, L. L., & Pecht, M. (2012). Health monitoring of cooling fan based on Mahalanobis distance with mRMR feature selection. IEEE Transactions on Instrumentation and Measurement, 61(8), 2222–2229.CrossRef Jin, X., Ma, E. W. M., Cheng, L. L., & Pecht, M. (2012). Health monitoring of cooling fan based on Mahalanobis distance with mRMR feature selection. IEEE Transactions on Instrumentation and Measurement, 61(8), 2222–2229.CrossRef
13.
Zurück zum Zitat Jin, X., & Chow, T. W. S. (2013). Anomaly detection of cooling fan and fault classification of induction motor using Mahalanobis–Taguchi system. Expert Systems with Applications, 40(15), 5787–5795.CrossRef Jin, X., & Chow, T. W. S. (2013). Anomaly detection of cooling fan and fault classification of induction motor using Mahalanobis–Taguchi system. Expert Systems with Applications, 40(15), 5787–5795.CrossRef
14.
Zurück zum Zitat Son, J.-D., Niu, G., Yang, B.-S., Hwang, D.-H., & Kang, D.-S. (2009). Development of smart sensors system for machine fault diagnosis. Expert Systems with Applications, 36(9), 11981–11991.CrossRef Son, J.-D., Niu, G., Yang, B.-S., Hwang, D.-H., & Kang, D.-S. (2009). Development of smart sensors system for machine fault diagnosis. Expert Systems with Applications, 36(9), 11981–11991.CrossRef
15.
Zurück zum Zitat Wang, Y., Miao, Q., Ma, E. W. M., Tsui, K.-L., & Pecht, M. G. (2013). Online anomaly detection for hard disk drive based on Mahalanobis distance. IEEE Transactions on Reliability, 62(1), 136–145.CrossRef Wang, Y., Miao, Q., Ma, E. W. M., Tsui, K.-L., & Pecht, M. G. (2013). Online anomaly detection for hard disk drive based on Mahalanobis distance. IEEE Transactions on Reliability, 62(1), 136–145.CrossRef
16.
Zurück zum Zitat Rabatel, J., Bringay, S., & Poncelet, P. (2011). Anomaly detection in monitoring sensor data for preventive maintenance. Expert Systems with Applications, 38(6), 7003–7015.CrossRef Rabatel, J., Bringay, S., & Poncelet, P. (2011). Anomaly detection in monitoring sensor data for preventive maintenance. Expert Systems with Applications, 38(6), 7003–7015.CrossRef
17.
Zurück zum Zitat Liu, Y., Liu, K., & Li, M. (2010). Passive diagnosis for wireless sensor networks. IEEE/ACM Transactions on Networking, 18(4), 1132–1144.CrossRef Liu, Y., Liu, K., & Li, M. (2010). Passive diagnosis for wireless sensor networks. IEEE/ACM Transactions on Networking, 18(4), 1132–1144.CrossRef
18.
Zurück zum Zitat Paradis, L., & Han, Q. (2007). A survey of fault management in wireless sensor networks. Journal of Network and Systems Management, 15(2), 171–190.CrossRef Paradis, L., & Han, Q. (2007). A survey of fault management in wireless sensor networks. Journal of Network and Systems Management, 15(2), 171–190.CrossRef
19.
Zurück zum Zitat Jiang, P. (2009). A new method for node fault detection in wireless sensor networks. Sensors, 9(2), 1282–1294.CrossRef Jiang, P. (2009). A new method for node fault detection in wireless sensor networks. Sensors, 9(2), 1282–1294.CrossRef
20.
Zurück zum Zitat Krishnamachari, B., & Iyengar, S. (2004). Distributed bayesian algorithms for fault-tolerant event region detection in wireless sensor networks. IEEE Transactions on Computers, 53(3), 241–250.CrossRef Krishnamachari, B., & Iyengar, S. (2004). Distributed bayesian algorithms for fault-tolerant event region detection in wireless sensor networks. IEEE Transactions on Computers, 53(3), 241–250.CrossRef
21.
Zurück zum Zitat Lee, M.-H., & Choi, Y.-H. (2008). Fault detection of wireless sensor networks. Computer Communications, 31(14), 3469–3475.CrossRef Lee, M.-H., & Choi, Y.-H. (2008). Fault detection of wireless sensor networks. Computer Communications, 31(14), 3469–3475.CrossRef
22.
Zurück zum Zitat Wang, S.-S., Yan, K.-Q., Wang, S.-C., & Li, C.-W. (2011). An integrated intrusion detection system for cluster-based wireless sensor networks. Expert Systems with Applications, 38(12), 15234–15243.CrossRef Wang, S.-S., Yan, K.-Q., Wang, S.-C., & Li, C.-W. (2011). An integrated intrusion detection system for cluster-based wireless sensor networks. Expert Systems with Applications, 38(12), 15234–15243.CrossRef
23.
Zurück zum Zitat Luo, X., Dong, M., & Huang, Y. (2006). On distributed fault-tolerant detection in wireless sensor networks. IEEE Transactions on Computers, 55(1), 58–70.CrossRef Luo, X., Dong, M., & Huang, Y. (2006). On distributed fault-tolerant detection in wireless sensor networks. IEEE Transactions on Computers, 55(1), 58–70.CrossRef
24.
Zurück zum Zitat Koushanfar, F., Potkonjak, M., & Sangiovanni-Vincentelli, A. (2003). On-line fault detection of sensor measurements. In Proceedings of IEEE sensors (pp. 974–979). Koushanfar, F., Potkonjak, M., & Sangiovanni-Vincentelli, A. (2003). On-line fault detection of sensor measurements. In Proceedings of IEEE sensors (pp. 974–979).
25.
Zurück zum Zitat Zhao, Y. J., Govindan, R., & Estrin, D. (2002). Residual energy scan for monitoring sensor networks. In IEEE wireless communications and networking conference (pp. 356–362). Zhao, Y. J., Govindan, R., & Estrin, D. (2002). Residual energy scan for monitoring sensor networks. In IEEE wireless communications and networking conference (pp. 356–362).
26.
Zurück zum Zitat Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., & Estrin, D. (2005). Sympathy for the sensor network debugger. In Proceedings of the 3rd international conference on embedded networked sensor systems (pp. 255–267). Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., & Estrin, D. (2005). Sympathy for the sensor network debugger. In Proceedings of the 3rd international conference on embedded networked sensor systems (pp. 255–267).
27.
Zurück zum Zitat Zaidi, Z. R., Hakami, S., Landfeldt, B., & Moors, T. (2010). Real-time detection of traffic anomalies in wireless mesh networks. Wireless Networks, 16, 1675–1689.CrossRef Zaidi, Z. R., Hakami, S., Landfeldt, B., & Moors, T. (2010). Real-time detection of traffic anomalies in wireless mesh networks. Wireless Networks, 16, 1675–1689.CrossRef
28.
Zurück zum Zitat Zhao, C., Sun, X., Sun, S., & Jiang, T. (2011). Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine. Expert Systems with Applications, 38(8), 9908–9912.CrossRef Zhao, C., Sun, X., Sun, S., & Jiang, T. (2011). Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine. Expert Systems with Applications, 38(8), 9908–9912.CrossRef
29.
Zurück zum Zitat Kar, C., & Mohanty, A. R. (2004). Application of KS test in ball bearing fault diagnosis. Journal of Sound and Vibration, 269(1–2), 439–454.CrossRef Kar, C., & Mohanty, A. R. (2004). Application of KS test in ball bearing fault diagnosis. Journal of Sound and Vibration, 269(1–2), 439–454.CrossRef
30.
Zurück zum Zitat Cong, F., Chen, J., & Pan, Y. (2011). Kolmogorov–Smirnov test for rolling bearing performance degradation assessment and prognosis. Journal of Vibration and Control, 17(9), 1337–1347.CrossRefMATH Cong, F., Chen, J., & Pan, Y. (2011). Kolmogorov–Smirnov test for rolling bearing performance degradation assessment and prognosis. Journal of Vibration and Control, 17(9), 1337–1347.CrossRefMATH
31.
Zurück zum Zitat Wang, X., & Makis, V. (2009). Autoregressive model-based gear shaft fault diagnosis using the Kolmogorov–Smirnov test. Journal of Sound and Vibration, 324(3–5), 413–423.CrossRef Wang, X., & Makis, V. (2009). Autoregressive model-based gear shaft fault diagnosis using the Kolmogorov–Smirnov test. Journal of Sound and Vibration, 324(3–5), 413–423.CrossRef
32.
Zurück zum Zitat Kay, S. M. (1988). Modern spectral estimation: theory and application. New Jersey: Prentice Hall.MATH Kay, S. M. (1988). Modern spectral estimation: theory and application. New Jersey: Prentice Hall.MATH
33.
Zurück zum Zitat Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1992). Numerical recipes in Fortran 77: The art of scientific computing. Cambridge: Cambridge University Press. Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1992). Numerical recipes in Fortran 77: The art of scientific computing. Cambridge: Cambridge University Press.
34.
Zurück zum Zitat Wang, W., & Wong, A. K. (2002). Autoregressive model-based gear fault diagnosis. Journal of Vibration and Acoustics, 124, 172–179.CrossRef Wang, W., & Wong, A. K. (2002). Autoregressive model-based gear fault diagnosis. Journal of Vibration and Acoustics, 124, 172–179.CrossRef
35.
Zurück zum Zitat Shittu, O., & Asemota, M. (2009). Comparison of criteria for estimating the order of autoregressive process: a Monte Carlo approach. European Journal of Scientific Research, 30(3), 409–416. Shittu, O., & Asemota, M. (2009). Comparison of criteria for estimating the order of autoregressive process: a Monte Carlo approach. European Journal of Scientific Research, 30(3), 409–416.
36.
Zurück zum Zitat Lau, C. P. (2013). Failure detection of wireless sensor network. Master’s thesis, City University of Hong Kong, Hong Kong. Lau, C. P. (2013). Failure detection of wireless sensor network. Master’s thesis, City University of Hong Kong, Hong Kong.
37.
Zurück zum Zitat Gong, R., & Huang, S. H. (2012). A Kolmogorov–Smirnov statistic based segmentation approach to learning from imbalanced datasets: with application in property refinance prediction. Expert Systems with Applications, 39(6), 6192–6200.CrossRef Gong, R., & Huang, S. H. (2012). A Kolmogorov–Smirnov statistic based segmentation approach to learning from imbalanced datasets: with application in property refinance prediction. Expert Systems with Applications, 39(6), 6192–6200.CrossRef
38.
Zurück zum Zitat Shibata, R. (1976). Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrika, 63(1), 117–126.CrossRefMATHMathSciNet Shibata, R. (1976). Selection of the order of an autoregressive model by Akaike’s information criterion. Biometrika, 63(1), 117–126.CrossRefMATHMathSciNet
Metadaten
Titel
Kuiper test and autoregressive model-based approach for wireless sensor network fault diagnosis
verfasst von
Xiaohang Jin
Tommy W. S. Chow
Yi Sun
Jihong Shan
Bill C. P. Lau
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 3/2015
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-014-0820-0

Weitere Artikel der Ausgabe 3/2015

Wireless Networks 3/2015 Zur Ausgabe

Neuer Inhalt