Skip to main content

2018 | OriginalPaper | Buchkapitel

Lagrangian Representation for Systems of Conservation Laws: An Overview

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an overview on some recent works in collaboration with S. Bianchini (see Bianchini and Modena in Lagrangian representation for solution to general systems of conservation laws [9] and the Ph.D. thesis Modena in Interaction functionals, Glimm approximations and Lagrangian structure of BV solutions for hyperbolic systems of conservation laws [15]), in which we propose a way to describe BV solutions to hyperbolic systems of conservation laws in one space dimension from a Lagrangian point of view.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
If AB are sets, \(\mathscr {A}, \mathscr {B}\) are \(\sigma \)-algebras on AB, respectively, and \(f: A \rightarrow B\) is a measurable function, then for any measure \(\mu \) on \((A, \mathscr {A})\), the push-forward \(f_\sharp \mu \) is the measure on \((B, \mathscr {B})\), defined by \(f_\sharp \mu (E) = \mu (f^{-1}(E))\) for any \(E \in \mathscr {B}\).
 
2
By entropic solution, we mean a solution obtained as limit of vanishing viscosity approximations; see [3].
 
3
See [11] for the definition of genuinely nonlinear or linearly degenerate characteristic fields. Roughly speaking, it amounts to say that the flux F has some strong convexity property.
 
4
The Vol’pert’s rule (see, for instance, [1, Theorem 3.96]) is the chain rule for the derivative of the composition F(u(x)) of a Lipschitz function F with a BV function u.
 
5
This can be done, for instance, in the following way. Assume for simplicity \(u^q(t, \cdot )\) is right continuous. Set \(\bar{U}^q(x) := \text { Tot.Var.}(\bar{u}^q; (-\infty , x])\). Set \(W^q:= (0, \text { Tot.Var.}(\bar{u}^q)]\),
$$\begin{aligned} \mathtt X^q(0, w) := (\bar{U}^q)^{-1}(w), \quad \rho ^q(w) := {\left\{ \begin{array}{ll} 1 &{} \text {if } {u^q} \text { has a positive jump at } \mathtt X^q(0, w), \\ -1 &{} \text {if } {u^q} \text { has a negative jump at }\mathtt X^q(0, w). \end{array}\right. } \end{aligned}$$
Set also for simplicity \(\mathtt u^q(w) := \int _0^w \rho ^q(w') dw'\). Denote by \(\{(t_j, x_j)\}_j\) the points in the (tx)-plane where two wavefronts in \(u^q\) collide (the discontinuity points at \(t=0\) are treated as collision points). By recursion, assume \(\mathtt X^q(t, \cdot )\) is defined on \([0, t_j]\) and let us define it on \((t_j, t_{j+1}]\). Assume that at \((t_j, x_j)\) the outgoing Riemann problem is \((u^L, u^R)\) with \(u^L < u^R\) (the case \(u^R < u^L\) is completely similar). Set \(\mathtt A(w) := \min \{\max \{ \mathtt u^q(w') \ | \ w' \le w\}, u^R\}\) for any \( w \in \mathtt X^q(t_j)^{-1}(x_j) \) and then
$$\begin{aligned} \mathtt X^q(t, w) := x_j + \bigg [\frac{d \mathrm {conv}_{[u^L, u^R]} F^q}{du}( \mathtt A(w))\bigg ] (t - t_j) \quad \text { for any } w \in \mathtt X^q(t_j)^{-1}(x_j) \text { and any } t \in (t_j, t_{j+1}]. \end{aligned}$$
 
6
If \(s_k <0\) the convex envelope \({{\mathrm{conv}}}_{[0, s_k]} f_k(\tau )\) must be substituted by the concave envelope \({{\mathrm{conv}}}_{[s_k, 0]} f_k(\tau )\).
 
Literatur
1.
Zurück zum Zitat L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, New York, 2000) L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, New York, 2000)
2.
Zurück zum Zitat S. Bianchini, Interaction estimates and Glimm functional for general hyperbolic systems. DCDS-A 9(1), 133–166 (2003)MathSciNetCrossRef S. Bianchini, Interaction estimates and Glimm functional for general hyperbolic systems. DCDS-A 9(1), 133–166 (2003)MathSciNetCrossRef
3.
Zurück zum Zitat S. Bianchini, A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161, 223–342 (2005)MathSciNetCrossRef S. Bianchini, A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161, 223–342 (2005)MathSciNetCrossRef
4.
Zurück zum Zitat S. Bianchini, E. Marconi, On the concentration of entropy for scalar conservation laws. DCDS-S 9(1), 73–88 (2016)MathSciNetMATH S. Bianchini, E. Marconi, On the concentration of entropy for scalar conservation laws. DCDS-S 9(1), 73–88 (2016)MathSciNetMATH
5.
Zurück zum Zitat S. Bianchini, E. Marconi, On the structure of \(L^\infty \) solutions to scalar conservation laws in one-space dimension. Preprint SISSA (2016) S. Bianchini, E. Marconi, On the structure of \(L^\infty \) solutions to scalar conservation laws in one-space dimension. Preprint SISSA (2016)
6.
Zurück zum Zitat S. Bianchini, S. Modena, On a quadratic functional for scalar conservation laws. J. Hyperb. Differ. Equ. 11(2), 355–435 (2014)MathSciNetCrossRef S. Bianchini, S. Modena, On a quadratic functional for scalar conservation laws. J. Hyperb. Differ. Equ. 11(2), 355–435 (2014)MathSciNetCrossRef
7.
Zurück zum Zitat S. Bianchini, S. Modena, Quadratic interaction functional for systems of conservation laws: a case study. Bull. Inst. Math. Acad Sinica (New Series) 9(3), 487–546 (2014) S. Bianchini, S. Modena, Quadratic interaction functional for systems of conservation laws: a case study. Bull. Inst. Math. Acad Sinica (New Series) 9(3), 487–546 (2014)
8.
Zurück zum Zitat S. Bianchini, S. Modena, Quadratic interaction functional for general systems of conservation laws. Comm. Math. Phys. 338, 1075–1152 (2015)MathSciNetCrossRef S. Bianchini, S. Modena, Quadratic interaction functional for general systems of conservation laws. Comm. Math. Phys. 338, 1075–1152 (2015)MathSciNetCrossRef
9.
Zurück zum Zitat S. Bianchini, S. Modena, Lagrangian representation for solution to general systems of conservation laws. In preparation (2016) S. Bianchini, S. Modena, Lagrangian representation for solution to general systems of conservation laws. In preparation (2016)
10.
Zurück zum Zitat S. Bianchini, L. Yu, Structure of entropy solutions to general scalar conservation laws in one space dimension. J. Math. Anal. Appl. 428(1), 356–386 (2015)MathSciNetCrossRef S. Bianchini, L. Yu, Structure of entropy solutions to general scalar conservation laws in one space dimension. J. Math. Anal. Appl. 428(1), 356–386 (2015)MathSciNetCrossRef
11.
Zurück zum Zitat A. Bressan, Hyperbolic systems of conservation laws The one dimensional Cauchy problem (Oxford University Press, 2000) A. Bressan, Hyperbolic systems of conservation laws The one dimensional Cauchy problem (Oxford University Press, 2000)
12.
Zurück zum Zitat C. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 107, 127–155 (1989)MathSciNetCrossRef C. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 107, 127–155 (1989)MathSciNetCrossRef
13.
Zurück zum Zitat R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 130, 312–366 (1989)MathSciNetMATH R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 130, 312–366 (1989)MathSciNetMATH
15.
Zurück zum Zitat S. Modena, Interaction functionals, Glimm approximations and Lagrangian structure of \(BV\) solutions for hyperbolic systems of conservation laws. Ph.D. Thesis, Sissa digital library, 2015 S. Modena, Interaction functionals, Glimm approximations and Lagrangian structure of \(BV\) solutions for hyperbolic systems of conservation laws. Ph.D. Thesis, Sissa digital library, 2015
Metadaten
Titel
Lagrangian Representation for Systems of Conservation Laws: An Overview
verfasst von
Stefano Modena
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-91548-7_26

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.