Skip to main content
Erschienen in: Journal of Visualization 1/2021

19.09.2020 | Regular Paper

Lagrangian visualization of mixing enhancement induced by finite-time stretching in compressible vortex interaction

verfasst von: Zhonghua Zheng, Zhouqin Fan, Zi’ang Wang, Bin Yu, Bin Zhang, Miaosheng He

Erschienen in: Journal of Visualization | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The investigation of the coupling relationship between mixing enhancement and convective stretching bears practical and scientific significance. In this paper, Lagrangian perspective is adopted for compressible vortex interaction visualization to emphasize the effect of inner flow dynamics other than the vorticity structure on mixing performance. Transport characteristics of the flow are studied through a blob of passive particles. The results demonstrate that Lagrangian coherent structures are faithfully tracked throughout the moving of particles, and the blob initially arranged upon the ridge of Lagrangian coherent structures exhibits efficient stretching. In this sense, the physical meaning of Lagrangian coherent structure as a material barrier and maximum stretching direction is highlighted. On this basis, mixing characteristics are investigated through the introduction of helium concentration blob considering viscous diffusion. Characterized by high growth rate of mixing and low mixing time, mixing enhancement is achieved with the aid of significant stretching directly reflected by high average finite-time Lyapunov exponent in the region of blob deposition, offering an optimal strategy for fluid mixing.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Brandt LK, Nomura KK (2006) The physics of vortex merger: further insight. Phys Fluids 18:051701CrossRef Brandt LK, Nomura KK (2006) The physics of vortex merger: further insight. Phys Fluids 18:051701CrossRef
Zurück zum Zitat Cetegen BM, Mohamad N (1993) Experiments on liquid mixing and reaction in a vortex. J Fluid Mech 249:391–414CrossRef Cetegen BM, Mohamad N (1993) Experiments on liquid mixing and reaction in a vortex. J Fluid Mech 249:391–414CrossRef
Zurück zum Zitat Dizes SL, Verga A (2002) Viscous interactions of two co-rotating vortices before merging. J Fluid Mech 467:389–410MathSciNetCrossRef Dizes SL, Verga A (2002) Viscous interactions of two co-rotating vortices before merging. J Fluid Mech 467:389–410MathSciNetCrossRef
Zurück zum Zitat Hang H, Yu B, Xiang Y et al (2020) An objective-adaptive refinement criterion based on modified ridge extraction method for finite-time Lyapunov exponent (FTLE) calculation. J Vis 23:81–95CrossRef Hang H, Yu B, Xiang Y et al (2020) An objective-adaptive refinement criterion based on modified ridge extraction method for finite-time Lyapunov exponent (FTLE) calculation. J Vis 23:81–95CrossRef
Zurück zum Zitat Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182–2189MathSciNetCrossRef Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182–2189MathSciNetCrossRef
Zurück zum Zitat Hunt J, Wray A, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for turbulence research report CTR-S88, pp 193–208 Hunt J, Wray A, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Center for turbulence research report CTR-S88, pp 193–208
Zurück zum Zitat Jimenez J (1975) Stability of a pair of co rotating vortices. Phys Fluids 18:1580–1581CrossRef Jimenez J (1975) Stability of a pair of co rotating vortices. Phys Fluids 18:1580–1581CrossRef
Zurück zum Zitat Kumar S, Orlicz G, Tomkins C (2005) Stretching of material lines in shock-accelerated gaseous flows. Phys Fluids 17:082107CrossRef Kumar S, Orlicz G, Tomkins C (2005) Stretching of material lines in shock-accelerated gaseous flows. Phys Fluids 17:082107CrossRef
Zurück zum Zitat Leweke T, Dizes SL, Williamson CHK (2016) Dynamics and instabilities of vortex pairs. Annu Rev Fluid Mech 48:507–541MathSciNetCrossRef Leweke T, Dizes SL, Williamson CHK (2016) Dynamics and instabilities of vortex pairs. Annu Rev Fluid Mech 48:507–541MathSciNetCrossRef
Zurück zum Zitat Liang G, Yu B, Zhang B et al (2019) Hidden flow structures in compressible mixing layer and a quantitative analysis of entrainment based on Lagrangian method. J Hydrodyn 31:256–265CrossRef Liang G, Yu B, Zhang B et al (2019) Hidden flow structures in compressible mixing layer and a quantitative analysis of entrainment based on Lagrangian method. J Hydrodyn 31:256–265CrossRef
Zurück zum Zitat Liu C, Gao Y, Tain S et al (2018) Rortex—a new vortex vector definition and vorticity tensor and vector decompositions. Phys Fluids 30:035103CrossRef Liu C, Gao Y, Tain S et al (2018) Rortex—a new vortex vector definition and vorticity tensor and vector decompositions. Phys Fluids 30:035103CrossRef
Zurück zum Zitat Maddalena L, Vergine F, Crisanti M (2014) Vortex dynamics studies in supersonic flow: merging of co-rotating streamwise vortices. Phys Fluids 26:046101CrossRef Maddalena L, Vergine F, Crisanti M (2014) Vortex dynamics studies in supersonic flow: merging of co-rotating streamwise vortices. Phys Fluids 26:046101CrossRef
Zurück zum Zitat Melander MV, Mcwilliams JC, Zabusky NJ (1987) Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J Fluid Mech 178:137–159CrossRef Melander MV, Mcwilliams JC, Zabusky NJ (1987) Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J Fluid Mech 178:137–159CrossRef
Zurück zum Zitat Melander MV, Zabusky NJ, Mcwilliams JC (1988) Symmetric vortex merger in two dimensions-causes and conditions. J Fluid Mech 195:303–340MathSciNetCrossRef Melander MV, Zabusky NJ, Mcwilliams JC (1988) Symmetric vortex merger in two dimensions-causes and conditions. J Fluid Mech 195:303–340MathSciNetCrossRef
Zurück zum Zitat Meunier P, Ehrenstein U, Leweke T (2002) A merging criterion for two-dimensional co-rotating vortices. Phys Fluids 14:2757MathSciNetCrossRef Meunier P, Ehrenstein U, Leweke T (2002) A merging criterion for two-dimensional co-rotating vortices. Phys Fluids 14:2757MathSciNetCrossRef
Zurück zum Zitat Meunier P, Leweke T (2001) Three-dimensional instability during vortex merging. Phys Fluids 13:2747–2750CrossRef Meunier P, Leweke T (2001) Three-dimensional instability during vortex merging. Phys Fluids 13:2747–2750CrossRef
Zurück zum Zitat Mitchell BE, Lele SK, Moin P (1995) Direct computation of the sound from a compressible co-rotating vortex pair. J Fluid Mech 285:181–202MathSciNetCrossRef Mitchell BE, Lele SK, Moin P (1995) Direct computation of the sound from a compressible co-rotating vortex pair. J Fluid Mech 285:181–202MathSciNetCrossRef
Zurück zum Zitat Nybelen L, Paoli R (2009) Direct and large-eddy simulations of merging in corotating vortex system. AIAA J 47:157–167CrossRef Nybelen L, Paoli R (2009) Direct and large-eddy simulations of merging in corotating vortex system. AIAA J 47:157–167CrossRef
Zurück zum Zitat Peacock T, Haller G (2013) Lagrangian coherent structures: the hidden skeleton of fluid flows. Phys Today 66:41–47CrossRef Peacock T, Haller G (2013) Lagrangian coherent structures: the hidden skeleton of fluid flows. Phys Today 66:41–47CrossRef
Zurück zum Zitat Qin S, Liu H, Xiang Y (2018) Lagrangian flow visualization of multiple co-axial co-rotating vortex rings. J Vis 21:63–71CrossRef Qin S, Liu H, Xiang Y (2018) Lagrangian flow visualization of multiple co-axial co-rotating vortex rings. J Vis 21:63–71CrossRef
Zurück zum Zitat Rossow VJ (1977) Convective merging of vortex cores in lift-generated wakes. J Aircr 14:283–290CrossRef Rossow VJ (1977) Convective merging of vortex cores in lift-generated wakes. J Aircr 14:283–290CrossRef
Zurück zum Zitat Shadden SC, Dabiri JO, Marsden JE (2006) Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys Fluids 18:047105MathSciNetCrossRef Shadden SC, Dabiri JO, Marsden JE (2006) Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys Fluids 18:047105MathSciNetCrossRef
Zurück zum Zitat Shadden SC, Lekien F, Marsden JE (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212:271–304MathSciNetCrossRef Shadden SC, Lekien F, Marsden JE (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212:271–304MathSciNetCrossRef
Zurück zum Zitat Spiteri RJ, Ruuth SJ (2003) Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math Comput Simul 62:125–135MathSciNetCrossRef Spiteri RJ, Ruuth SJ (2003) Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math Comput Simul 62:125–135MathSciNetCrossRef
Zurück zum Zitat Tomkins C, Kumar S, Orlicz G, Prestridge K (2008) An experimental investigation of mixing mechanisms in shock-accelerated flow. J Fluid Mech 611:131–150CrossRef Tomkins C, Kumar S, Orlicz G, Prestridge K (2008) An experimental investigation of mixing mechanisms in shock-accelerated flow. J Fluid Mech 611:131–150CrossRef
Zurück zum Zitat Vergine F, Ground C, Maddalena L (2016) Turbulent kinetic energy decay in supersonic streamwise interacting vortices. J Fluid Mech 807:353–385MathSciNetCrossRef Vergine F, Ground C, Maddalena L (2016) Turbulent kinetic energy decay in supersonic streamwise interacting vortices. J Fluid Mech 807:353–385MathSciNetCrossRef
Zurück zum Zitat Verwer J, Sommeijer B (2004) RKC time-stepping for advection diffusion reaction problems. J Comput Phys 20:61–79MathSciNetCrossRef Verwer J, Sommeijer B (2004) RKC time-stepping for advection diffusion reaction problems. J Comput Phys 20:61–79MathSciNetCrossRef
Zurück zum Zitat Wang Z, Yu B, Chen H et al (2018) Scaling vortex breakdown mechanism based on viscous effect in shock cylindrical bubble interaction. Phys Fluids 30:126103CrossRef Wang Z, Yu B, Chen H et al (2018) Scaling vortex breakdown mechanism based on viscous effect in shock cylindrical bubble interaction. Phys Fluids 30:126103CrossRef
Zurück zum Zitat Xiang Y, Lin H, Zhang B et al (2018) Quantitative analysis of vortex added-mass and impulse generation during vortex ring formation based on elliptic Lagrangian coherent structures. Exp Therm Fluid Sci 94:295–303CrossRef Xiang Y, Lin H, Zhang B et al (2018) Quantitative analysis of vortex added-mass and impulse generation during vortex ring formation based on elliptic Lagrangian coherent structures. Exp Therm Fluid Sci 94:295–303CrossRef
Zurück zum Zitat Zheng Z, Zhou F, Wang Z et al (2020) A numerical study on compressibility effect on the evolution of vortex interaction. Acta Aeronaut Astronaut Sinica 41:123295 Zheng Z, Zhou F, Wang Z et al (2020) A numerical study on compressibility effect on the evolution of vortex interaction. Acta Aeronaut Astronaut Sinica 41:123295
Metadaten
Titel
Lagrangian visualization of mixing enhancement induced by finite-time stretching in compressible vortex interaction
verfasst von
Zhonghua Zheng
Zhouqin Fan
Zi’ang Wang
Bin Yu
Bin Zhang
Miaosheng He
Publikationsdatum
19.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Visualization / Ausgabe 1/2021
Print ISSN: 1343-8875
Elektronische ISSN: 1875-8975
DOI
https://doi.org/10.1007/s12650-020-00698-z

Weitere Artikel der Ausgabe 1/2021

Journal of Visualization 1/2021 Zur Ausgabe