Skip to main content

2016 | OriginalPaper | Buchkapitel

9. Laminar Flow and Turbulent Flow (The Similarity Rule)

verfasst von : Hajime Akimoto, Yoshinari Anoda, Kazuyuki Takase, Hiroyuki Yoshida, Hidesada Tamai

Erschienen in: Nuclear Thermal Hydraulics

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When considering the fluid motion, it is convenient to express the fundamental equations in a dimensionless form. For simplicity, we consider a one-dimensional flow of incompressible fluid that flows perpendicular to the direction of gravitational force. In this case, the Navier-Stokes equation is expressed as the following equation:
$$ \frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}=-\frac{1}{\rho}\frac{\partial p}{\partial x}+\nu \frac{\partial^2u}{\partial {x}^2} $$
With the characteristic length L and characteristic velocity U that characterize the flow, each variable can be normalized by the following expressions:
$$ {x}^{*}=\frac{x}{L},\operatorname{}{u}^{*}=\frac{u}{U},\kern1.25em {t}^{*}=\frac{t}{L/U},\kern0.75em {p}^{*}=\frac{p}{\rho {U}^2} $$
Using them, we write the normalized form of Eq. (9.1) as follows:
$$ \frac{\partial {u}^{\ast }}{\partial {t}^{\ast }}+{u}^{\ast}\frac{\partial {u}^{\ast }}{\partial {x}^{\ast }}=-\frac{\partial {p}^{\ast }}{\partial {x}^{\ast }}+\frac{\nu }{UL}\frac{\partial^2{u}^{\ast }}{\partial {x}^{\ast 2}}=-\frac{\partial {p}^{\ast }}{\partial {x}^{\ast }}+\frac{1}{Re}\frac{\partial^2{u}^{\ast }}{\partial {x}^{\ast 2}} $$
The Reynolds number can be transformed to Eq. (9.4).
$$ Re=\frac{UL}{\nu }=\frac{U^2/L}{\nu U/{L}^2}\cong \frac{u\partial u/\partial x\left(\mathrm{Inertial}\ \mathrm{force}\right)}{\nu {\partial}^2u/\partial {x}^2\left(\mathrm{Viscous}\ \mathrm{force}\right)} $$
As expressed by the above equation, the Reynolds number physically represents the ratio of inertial force to viscous force. That is, as is known from Eq. (9.3), in a flow field with a large Reynolds number (1/Re → 0), since the effect of viscous force is small, the force balance in the flow field is determined by the inertial force and pressure terms, and an extremely large Reynolds number leads to the flow of an ideal fluid. On the other hand, in a flow field with a small Reynolds number (1/Re → ), since the effect of inertial force is small, the flow field is determined by the viscous force and pressure terms. In addition, the force acting on an object in a flow with a sufficiently large Reynolds number or an ideal fluid becomes the total sum of the pressures around the object, while that in a flow with a sufficiently small Reynolds number becomes the sum of the forces caused by surface friction due to viscosity and by pressure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Metadaten
Titel
Laminar Flow and Turbulent Flow (The Similarity Rule)
verfasst von
Hajime Akimoto
Yoshinari Anoda
Kazuyuki Takase
Hiroyuki Yoshida
Hidesada Tamai
Copyright-Jahr
2016
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-55603-9_9