Skip to main content

2022 | OriginalPaper | Buchkapitel

9. Laminated Timber Buildings: An Overview of Environmental Impacts

verfasst von : Rahman Azari, Maryam Singery

Erschienen in: The Importance of Wood and Timber in Sustainable Buildings

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wood and timber are historical construction materials, but their applications in buildings have been largely limited to low-rise construction as well as wood products such as doors, window frames, or furniture used in buildings. The application of timber in tall buildings has recently received significant interest by architects and engineers, mainly due to concerns about the environmental impacts of buildings, timber’s carbon potentials, and developments of new timber products with enhanced mechanical properties.
The current chapter will provide an overview of the state-of-the-art knowledge related to the environmental impacts of timber’s application in buildings. The chapter starts with a brief history of timbers in buildings, reviews the carbon cycling in forests and how deforestation affects it, and proceeds with the pros and cons of timber construction and the recent technological developments that have addressed the concerns regarding timber’s application in tall buildings. Finally, an overview of the literature regarding the life cycle environmental impacts of timber buildings is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
Carbon constitutes 27.24% of the CO2 mass. One ton of carbon translates to 3.67 ton of CO2.
 
Literatur
5.
Zurück zum Zitat Williams, J. H. (1971). Roman building-materials in south-East England. Britannia, 2, 166–195.CrossRef Williams, J. H. (1971). Roman building-materials in south-East England. Britannia, 2, 166–195.CrossRef
6.
Zurück zum Zitat Langenbach, R. (2007). From “opus Craticium” to the “Chicago frame”: Earthquake-resistant traditional construction. International Journal of Architectural Heritage, 1, 29–59.CrossRef Langenbach, R. (2007). From “opus Craticium” to the “Chicago frame”: Earthquake-resistant traditional construction. International Journal of Architectural Heritage, 1, 29–59.CrossRef
7.
8.
Zurück zum Zitat Howard, J. L., & Liang, S. (2019). U.S. timber production, trade, consumption, and price statistics, 1965–2017. Washington, DC: United States Department of Agriculture.CrossRef Howard, J. L., & Liang, S. (2019). U.S. timber production, trade, consumption, and price statistics, 1965–2017. Washington, DC: United States Department of Agriculture.CrossRef
9.
Zurück zum Zitat FAO. (2020). The state of the World’s forests 2020. New York: FAO and UNEP. FAO. (2020). The state of the World’s forests 2020. New York: FAO and UNEP.
10.
Zurück zum Zitat USGCRP. (2018). Second state of the carbon cycle report. Washington, DC: US Global Change Research Program. USGCRP. (2018). Second state of the carbon cycle report. Washington, DC: US Global Change Research Program.
11.
Zurück zum Zitat Battles, J. J., Bell, D. M., Kennedy, R. E., Saah, D. S., Collins, B. M., York, R. A., et al. (2018). Innovations in measuring and managing forest carbon stocks in California. In California’s Fourth Climate Change Assessment. Battles, J. J., Bell, D. M., Kennedy, R. E., Saah, D. S., Collins, B. M., York, R. A., et al. (2018). Innovations in measuring and managing forest carbon stocks in California. In California’s Fourth Climate Change Assessment.
12.
Zurück zum Zitat EPA. (2020b). U.S. Inventory of Greenhouse gas emissions and sinks. Washington, DC: United States Environmental Protection Agency. EPA. (2020b). U.S. Inventory of Greenhouse gas emissions and sinks. Washington, DC: United States Environmental Protection Agency.
13.
Zurück zum Zitat Sitch, S., Huntingford, C., Gedney, N., Levy, P., Lomas, M. R., Piao, S. L., et al. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using 5 dynamic global vegetation models (DGVMs). Global Change Biology, 14, 1–25.CrossRef Sitch, S., Huntingford, C., Gedney, N., Levy, P., Lomas, M. R., Piao, S. L., et al. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using 5 dynamic global vegetation models (DGVMs). Global Change Biology, 14, 1–25.CrossRef
14.
Zurück zum Zitat Tejaswi, G. (2007). Manual on deforestation, degradation, and fragmentation using remote sensing and GIS. Rome: FAO. Tejaswi, G. (2007). Manual on deforestation, degradation, and fragmentation using remote sensing and GIS. Rome: FAO.
15.
Zurück zum Zitat IPCC. (2020). Climate change and land. Geneva: Intergovernmental Panel on Climate Change. IPCC. (2020). Climate change and land. Geneva: Intergovernmental Panel on Climate Change.
16.
Zurück zum Zitat Woodard, A., & Milner, H. (2016). Sustainability of timber and wood 7 in construction. In J. Khatib (Ed.), Sustainability of construction materials (pp. 129–157). Cambridge: Woodhead.CrossRef Woodard, A., & Milner, H. (2016). Sustainability of timber and wood 7 in construction. In J. Khatib (Ed.), Sustainability of construction materials (pp. 129–157). Cambridge: Woodhead.CrossRef
17.
Zurück zum Zitat Ramagea, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., et al. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333–359.CrossRef Ramagea, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., et al. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333–359.CrossRef
18.
Zurück zum Zitat Rowell, R. (2007). Chapter 22. Chemical modification of wood. In F. Stoyko & B. Debes (Eds.), Handbook of engineering biopolymers—homopolymers, blends and composites. Munich: Hanser. Rowell, R. (2007). Chapter 22. Chemical modification of wood. In F. Stoyko & B. Debes (Eds.), Handbook of engineering biopolymers—homopolymers, blends and composites. Munich: Hanser.
20.
Zurück zum Zitat Lippiatt, B. (2007). BEES 4.0: Building for environmental and economic sustainability, technical manual and user guide. Gaithersburg, MD: National Institute of Standards and Technology.CrossRef Lippiatt, B. (2007). BEES 4.0: Building for environmental and economic sustainability, technical manual and user guide. Gaithersburg, MD: National Institute of Standards and Technology.CrossRef
21.
Zurück zum Zitat Nakano, K., Koike, W., Yamagishi, K., & Hattori, N. (2020). Environmental impacts of cross-laminated timber production in Japan. Clean Technologies and Environmental Policy, 22, 2193–2205.CrossRef Nakano, K., Koike, W., Yamagishi, K., & Hattori, N. (2020). Environmental impacts of cross-laminated timber production in Japan. Clean Technologies and Environmental Policy, 22, 2193–2205.CrossRef
22.
Zurück zum Zitat Chen, Z., Gu, H., Bergman, R. D., & Liang, S. (2020). Comparative life-cycle assessment of a high-rise mass timber building with an equivalent reinforced concrete alternative using the Athena impact estimator for buildings. Sustainability, 12(4708), 1–15. Chen, Z., Gu, H., Bergman, R. D., & Liang, S. (2020). Comparative life-cycle assessment of a high-rise mass timber building with an equivalent reinforced concrete alternative using the Athena impact estimator for buildings. Sustainability, 12(4708), 1–15.
23.
Zurück zum Zitat Katsuyuki, N., Karube, M., & Hattori, N. (2020). Environmental impacts of building construction using cross-laminated timber panel construction method: A case of the research building in Kyushu, Japan. Sustainability, 12(2220), 1–14. Katsuyuki, N., Karube, M., & Hattori, N. (2020). Environmental impacts of building construction using cross-laminated timber panel construction method: A case of the research building in Kyushu, Japan. Sustainability, 12(2220), 1–14.
24.
Zurück zum Zitat FPL. (2010). Wood handbook; wood as an engineering material. Madison, WI: Forest Products Laboratory. United States Department of Agriculture Forest Service. FPL. (2010). Wood handbook; wood as an engineering material. Madison, WI: Forest Products Laboratory. United States Department of Agriculture Forest Service.
25.
Zurück zum Zitat Robertson, A. B., Lam, F. C., & Cole, R. J. (2012). A comparative cradle-to-gate life cycle assessment of mid-rise office building construction alternatives: Laminated timber or reinforced concrete. Buildings, 2, 245–270.CrossRef Robertson, A. B., Lam, F. C., & Cole, R. J. (2012). A comparative cradle-to-gate life cycle assessment of mid-rise office building construction alternatives: Laminated timber or reinforced concrete. Buildings, 2, 245–270.CrossRef
26.
Zurück zum Zitat Guo, H., Liu, Y., Meng, Y., Huang, H., Sun, C., & Shao, Y. (2017). A comparison of the energy saving and carbon reduction performance between reinforced concrete and cross-laminated timber structures in residential buildings in the severe cold region of China. Sustainability, 9(1426), 1–15. Guo, H., Liu, Y., Meng, Y., Huang, H., Sun, C., & Shao, Y. (2017). A comparison of the energy saving and carbon reduction performance between reinforced concrete and cross-laminated timber structures in residential buildings in the severe cold region of China. Sustainability, 9(1426), 1–15.
27.
Zurück zum Zitat Skullestada, J. L., Bohneb, R. A., & Lohneb, J. (2016). High-rise timber buildings as a climate change mitigation measure—a comparative LCA of structural system alternatives. Energy Procedia, 96, 112–123.CrossRef Skullestada, J. L., Bohneb, R. A., & Lohneb, J. (2016). High-rise timber buildings as a climate change mitigation measure—a comparative LCA of structural system alternatives. Energy Procedia, 96, 112–123.CrossRef
Metadaten
Titel
Laminated Timber Buildings: An Overview of Environmental Impacts
verfasst von
Rahman Azari
Maryam Singery
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-71700-1_9