Skip to main content
Erschienen in:

01.06.2024 | Original Paper

Landslide identification and deformation monitoring analysis in Xining City based on the time series InSAR of Sentinel-1A with ascending and descending orbits

verfasst von: Li He, Xiantan Wu, Zhengwei He, Dongjian Xue, Wenqian Bai, Guichuan Kang, Xin Chen, Yuxiang Zhang

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 6/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Landslide hazards are a common occurrence on the Loess Plateau of China, and the use of time-series interferometric synthetic aperture radar (InSAR) can effectively identify potential landslides and monitor their deformation, thus allowing to mitigate the risks associated with such hazards. In this study, we used Sentinel-1A ascending and descending orbit images to identify 74 significantly deformed areas in Xining city, of which 35 were confirmed as active landslides, using two time-series InSAR algorithms: small baseline subset (SBAS) and permanent scatterer (PS). Compared to PS, SBAS yielded a higher point density and more continuous deformation rate results in space. Our correlation analysis indicated a high correlation between the deformation rate results obtained from SBAS and PS algorithms, demonstrating their high consistency. Furthermore, by comparing the monitoring results of SBAS and PS algorithms with the GNSS monitoring data, we observed that the cumulative landslide deformation detected by PS algorithms was more consistent with the GNSS monitoring data. Finally, we analyzed the relationship between landslide deformation and the main influencing factors, which showed that the combined effect of precipitation, fault, slope, and engineered rock formations was the primary cause of landslide activity in the region during the study period. In conclusion, time-series InSAR algorithm is a valuable tool for identifying and monitoring loess landslides, and provides a scientific basis for regional disaster prevention and control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Huina H et al (2021) Stability evaluation at Xishan Loess landslide using InSAR technique applying ascending and descending SAR data. Chengdu University of Technology, College of Earth Science, Erxianqiao, Chenghua District, Chengdu, China; Qinghai Geological Survey Institute, Chengzhong District, Xining, China. https://doi.org/10.1117/1.JRS.15.034519 Huina H et al (2021) Stability evaluation at Xishan Loess landslide using InSAR technique applying ascending and descending SAR data. Chengdu University of Technology, College of Earth Science, Erxianqiao, Chenghua District, Chengdu, China; Qinghai Geological Survey Institute, Chengzhong District, Xining, China. https://​doi.​org/​10.​1117/​1.​JRS.​15.​034519
Metadaten
Titel
Landslide identification and deformation monitoring analysis in Xining City based on the time series InSAR of Sentinel-1A with ascending and descending orbits
verfasst von
Li He
Xiantan Wu
Zhengwei He
Dongjian Xue
Wenqian Bai
Guichuan Kang
Xin Chen
Yuxiang Zhang
Publikationsdatum
01.06.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 6/2024
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-024-03708-8