Skip to main content

2016 | OriginalPaper | Buchkapitel

7. Large-Eddy-Simulation (LES) Analysis

verfasst von : Stefan aus der Wiesche, Christian Helcig

Erschienen in: Convective Heat Transfer From Rotating Disks Subjected To Streams Of Air

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computational Fluid Dynamics, usually abbreviated as CFD, has become a “third” approach in addition to the classic analytical treatment and the experimental investigation of flow and heat transfer phenomena. CFD is a branch of fluid mechanics that uses numerical methods and mathematical algorithms to solve and analyze problems that involve flow phenomena. This approach is especially attractive since powerful computers for performing the calculations are now widely available. However, the direct numerical simulation (DNS) of turbulent flows resolving the entire range of turbulent length scales at high Reynolds numbers is still not feasible, and appropriate simulation strategies for such flows are still required.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic, LondonMATH Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic, LondonMATH
2.
Zurück zum Zitat Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge, MA Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge, MA
4.
Zurück zum Zitat Nakayama A, Miyashita K (2001) URANS simulation of flow over smooth topography. Int J Numer Methods Heat Fluid Flow 11:723–745CrossRefMATH Nakayama A, Miyashita K (2001) URANS simulation of flow over smooth topography. Int J Numer Methods Heat Fluid Flow 11:723–745CrossRefMATH
5.
Zurück zum Zitat Lesieur M, Metais O, Comte P (2005) Large-eddy simulations of turbulence. Cambridge University Press, CambridgeCrossRefMATH Lesieur M, Metais O, Comte P (2005) Large-eddy simulations of turbulence. Cambridge University Press, CambridgeCrossRefMATH
6.
Zurück zum Zitat Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164CrossRef Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91:99–164CrossRef
8.
Zurück zum Zitat Leonard A (1974) Energy cascade in large eddy simulations of turbulent fluid flows. Adv Geophys A 18:237–248CrossRef Leonard A (1974) Energy cascade in large eddy simulations of turbulent fluid flows. Adv Geophys A 18:237–248CrossRef
9.
Zurück zum Zitat Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Proceedings IBM scientific computing symposium on environmental sciences, IBM Form 320-1951, pp 195–210 Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Proceedings IBM scientific computing symposium on environmental sciences, IBM Form 320-1951, pp 195–210
10.
Zurück zum Zitat Rodi W, Ferziger JH, Breuer M, Pourquie M (1997) Status of large eddy simulation: results of a workshop, workshop on LES of flows past bluff bodies (Rottach-Egern, Tegernsee, Germany, 1995). ASME J Fluids Eng 119:248–262CrossRef Rodi W, Ferziger JH, Breuer M, Pourquie M (1997) Status of large eddy simulation: results of a workshop, workshop on LES of flows past bluff bodies (Rottach-Egern, Tegernsee, Germany, 1995). ASME J Fluids Eng 119:248–262CrossRef
11.
Zurück zum Zitat Grinstein FF, Margolin LG, Rider WJ (eds) (2010) Implicit large eddy simulation. Cambridge University Press, Cambridge, Chapter 3 Grinstein FF, Margolin LG, Rider WJ (eds) (2010) Implicit large eddy simulation. Cambridge University Press, Cambridge, Chapter 3
12.
Zurück zum Zitat Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy-simulations. Annu Rev Fluid Mech 32:1–32MathSciNetCrossRef Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy-simulations. Annu Rev Fluid Mech 32:1–32MathSciNetCrossRef
14.
Zurück zum Zitat Spalart PR, Jou WH, Strelets M, Allmaras SR (1997) Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach. In: Advances in DNS/LES, proceedings of the first AFOSR international conference on DNS/LES Spalart PR, Jou WH, Strelets M, Allmaras SR (1997) Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach. In: Advances in DNS/LES, proceedings of the first AFOSR international conference on DNS/LES
15.
Zurück zum Zitat Strelets M (2001) Detached eddy simulation of massively separated flows. Paper AIAA 2001-0879 Strelets M (2001) Detached eddy simulation of massively separated flows. Paper AIAA 2001-0879
16.
Zurück zum Zitat Czarny O, Iacovides H, Launder BE (2002) Precessing vortex structures in turbulent flow within rotor-stator disc cavities. Flow Turbul Combust 69:51–61CrossRefMATH Czarny O, Iacovides H, Launder BE (2002) Precessing vortex structures in turbulent flow within rotor-stator disc cavities. Flow Turbul Combust 69:51–61CrossRefMATH
17.
Zurück zum Zitat Kobayashi R (1994) Review: laminar-to-turbulent transition of three-dimensional boundary layers on rotating bodies. ASME J Fluids Eng 116:200–211CrossRef Kobayashi R (1994) Review: laminar-to-turbulent transition of three-dimensional boundary layers on rotating bodies. ASME J Fluids Eng 116:200–211CrossRef
18.
Zurück zum Zitat Lingwood RL (1996) An experimental study of absolute instability of the rotating disk boundary layer flow. J Fluid Mech 314:373–405CrossRef Lingwood RL (1996) An experimental study of absolute instability of the rotating disk boundary layer flow. J Fluid Mech 314:373–405CrossRef
19.
Zurück zum Zitat Littell HS, Eaton JK (1994) Turbulence characteristics of the boundary layer on a rotating disk. J Fluid Mech 266:175–207CrossRef Littell HS, Eaton JK (1994) Turbulence characteristics of the boundary layer on a rotating disk. J Fluid Mech 266:175–207CrossRef
20.
Zurück zum Zitat Elkins CJ, Eaton JK (2000) Turbulent heat and momentum transport on a rotating disk. J Fluid Mech 402:225–253CrossRefMATH Elkins CJ, Eaton JK (2000) Turbulent heat and momentum transport on a rotating disk. J Fluid Mech 402:225–253CrossRefMATH
21.
Zurück zum Zitat Wu X, Squires KD (2000) Prediction and investigation of the turbulent flow over a rotating disk. J Fluid Mech 18:231–264CrossRef Wu X, Squires KD (2000) Prediction and investigation of the turbulent flow over a rotating disk. J Fluid Mech 18:231–264CrossRef
22.
Zurück zum Zitat Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765CrossRefMATH Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765CrossRefMATH
23.
Zurück zum Zitat Zang Y, Street R, Koseff JR (1993) A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys Fluids 5:3186–3196CrossRef Zang Y, Street R, Koseff JR (1993) A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys Fluids 5:3186–3196CrossRef
24.
Zurück zum Zitat Vreman B, Geurts B, Kuerten H (1994) On the formulation of the dynamic mixed subgrid-scale model. Phys Fluids 6:4057–4059CrossRefMATH Vreman B, Geurts B, Kuerten H (1994) On the formulation of the dynamic mixed subgrid-scale model. Phys Fluids 6:4057–4059CrossRefMATH
25.
Zurück zum Zitat Akselvoll K, Moin P (1996) Large-eddy simulation of turbulent confined coannular jets. J Fluid Mech 315:387–411CrossRef Akselvoll K, Moin P (1996) Large-eddy simulation of turbulent confined coannular jets. J Fluid Mech 315:387–411CrossRef
26.
Zurück zum Zitat Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166CrossRefMATH Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166CrossRefMATH
27.
Zurück zum Zitat Spalart PR (1988) Direct simulation of a turbulent boundary layer up to Reθ = 1410. J Fluid Mech 187:61–98CrossRef Spalart PR (1988) Direct simulation of a turbulent boundary layer up to Reθ = 1410. J Fluid Mech 187:61–98CrossRef
28.
Zurück zum Zitat Lygren M, Andersson HI (2004) Large eddy simulations of the turbulent flow between a rotating and a stationary disk. ZAMP 55:268–281MathSciNetCrossRefMATH Lygren M, Andersson HI (2004) Large eddy simulations of the turbulent flow between a rotating and a stationary disk. ZAMP 55:268–281MathSciNetCrossRefMATH
29.
Zurück zum Zitat Andersson HI, Lygren M (2006) LES of open rotor-stator flow. Int J Heat Fluid Flow 27:551–557CrossRef Andersson HI, Lygren M (2006) LES of open rotor-stator flow. Int J Heat Fluid Flow 27:551–557CrossRef
30.
Zurück zum Zitat Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4:633–635CrossRef Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4:633–635CrossRef
31.
Zurück zum Zitat Severac E, Serre E (2007) A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities. J Comput Phys 226:1234–1255MathSciNetCrossRefMATH Severac E, Serre E (2007) A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities. J Comput Phys 226:1234–1255MathSciNetCrossRefMATH
32.
Zurück zum Zitat aus der Wiesche S (2004) LES study of heat transfer augmentation and wake instabilities of a rotating disk in a planar stream of air. Heat Mass Transf 40:271–284CrossRef aus der Wiesche S (2004) LES study of heat transfer augmentation and wake instabilities of a rotating disk in a planar stream of air. Heat Mass Transf 40:271–284CrossRef
33.
Zurück zum Zitat aus der Wiesche S (2007) Heat transfer from a rotating disk in a parallel air crossflow. Int J Therm Sci 46:745–754CrossRef aus der Wiesche S (2007) Heat transfer from a rotating disk in a parallel air crossflow. Int J Therm Sci 46:745–754CrossRef
34.
Zurück zum Zitat Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, BerlinCrossRefMATH Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, BerlinCrossRefMATH
35.
Zurück zum Zitat Trinkl CM, Bardas U, Weyck A, aus der Wiesche S (2011) Experimental study of the convective heat transfer from a rotating disc subjected to forced air streams. Int J Therm Sci 50:73–80CrossRef Trinkl CM, Bardas U, Weyck A, aus der Wiesche S (2011) Experimental study of the convective heat transfer from a rotating disc subjected to forced air streams. Int J Therm Sci 50:73–80CrossRef
36.
Zurück zum Zitat Tuliszka-Sznitko E, Zielinski A, Majchrowski W (2009) LES of the transitional flow in rotor/stator cavity. Archives Mech 61:93–118MathSciNet Tuliszka-Sznitko E, Zielinski A, Majchrowski W (2009) LES of the transitional flow in rotor/stator cavity. Archives Mech 61:93–118MathSciNet
37.
Zurück zum Zitat Tuliszka-Sznitko E, Majchrowski W (2010) LES and DNS of the flow with heat transfer in rotating cavity. Comput Methods Sci Technol 16:105–114CrossRef Tuliszka-Sznitko E, Majchrowski W (2010) LES and DNS of the flow with heat transfer in rotating cavity. Comput Methods Sci Technol 16:105–114CrossRef
38.
Zurück zum Zitat Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385CrossRefMATH Meneveau C, Lund TS, Cabot WH (1996) A Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385CrossRefMATH
39.
Zurück zum Zitat Nguyen TD, Harmand S (2013) Heat and mass transfer from a rotating cylinder with a spanwise disk at low-velocity crossflows. In: Proceedings ASME fluids engineering summer meeting, Incline Village, Nevada (paper FEDSM2013-16541) Nguyen TD, Harmand S (2013) Heat and mass transfer from a rotating cylinder with a spanwise disk at low-velocity crossflows. In: Proceedings ASME fluids engineering summer meeting, Incline Village, Nevada (paper FEDSM2013-16541)
40.
Zurück zum Zitat Latour B, Bouvier P, Harmand S (2011) Convective heat transfer on a rotating disk with transverse air crossflow. ASME J Heat Transfer 133 (paper-ID 021702) (10 p) Latour B, Bouvier P, Harmand S (2011) Convective heat transfer on a rotating disk with transverse air crossflow. ASME J Heat Transfer 133 (paper-ID 021702) (10 p)
Metadaten
Titel
Large-Eddy-Simulation (LES) Analysis
verfasst von
Stefan aus der Wiesche
Christian Helcig
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-20167-2_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.