Skip to main content

2020 | OriginalPaper | Buchkapitel

Large Eddy Simulation of Flows of Engineering Interest: A Review

verfasst von : S. Sarkar

Erschienen in: 50 Years of CFD in Engineering Sciences

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The deeper insights of relationships between large and small scales lead to the development of large eddy simulation (LES), where large scales are explicitly resolved and small scales being universal are modeled. With the advent of high computing power, it is feasible now to successfully simulate the complex turbulent flows of engineering interest using LES. The paper starts with a brief discussion on features of turbulence leading to LES and subgrid-scale models. The evaluation of LES to resolve the physics of transitional and turbulent flows are made based on illustrations, where the few being previous studies of the author and his research group. Although results demonstrate an immense potential of LES to simulate the transitional and turbulent flows as an alternative to DNS with moderate computational cost, there exist several bottlenecks even today. The requirement of very fine meshes near walls is one of such bottlenecks in using LES at high Reynolds number flows. The hybrid LES-RANS, which was invented to eliminate the limitations, is also discussed here in brief. As a concluding remark, it can be stated that the method is particularly suitable and superior to RANS for situations, where unsteadiness and large-scale structures dominate the flow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akhavan, R., Ansari, A., Kang, S., & Mangiavacchi, N. (2000). Subgrid-scale interactions in a numerically simulated planar turbulent jet and implications for modeling. Journal of Fluid Mechanics, 408, 83–120.MATHCrossRef Akhavan, R., Ansari, A., Kang, S., & Mangiavacchi, N. (2000). Subgrid-scale interactions in a numerically simulated planar turbulent jet and implications for modeling. Journal of Fluid Mechanics, 408, 83–120.MATHCrossRef
2.
Zurück zum Zitat Alam, M., & Sandham, N. D. (2000). Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. Journal of Fluid Mechanics, 410, 1–28.MATHCrossRef Alam, M., & Sandham, N. D. (2000). Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. Journal of Fluid Mechanics, 410, 1–28.MATHCrossRef
3.
Zurück zum Zitat Anand, K., & Subrata, S. (2016). Features of a laminar separated boundary layer near the leading-edge of a model aerofoil for different angles of attack: An experimental study. ASME Journal of Fluids Engineering, 139, 021201–021214.CrossRef Anand, K., & Subrata, S. (2016). Features of a laminar separated boundary layer near the leading-edge of a model aerofoil for different angles of attack: An experimental study. ASME Journal of Fluids Engineering, 139, 021201–021214.CrossRef
4.
Zurück zum Zitat Bardina, J., Ferziger, J. H., & Reynolds, W. C. (1980). Improved subgrid scale models for large eddy simulation. American Institute of Aeronautics and Astronautics, 80–1357. Bardina, J., Ferziger, J. H., & Reynolds, W. C. (1980). Improved subgrid scale models for large eddy simulation. American Institute of Aeronautics and Astronautics, 80–1357.
5.
Zurück zum Zitat Breuer, M., Peller, N., Rapp, C., & Manhart, M. (2009). Flow over periodic hills-numerical and experimental study in a wide range of Reynolds numbers. Computers & Fluids, 38, 433–457.MATHCrossRef Breuer, M., Peller, N., Rapp, C., & Manhart, M. (2009). Flow over periodic hills-numerical and experimental study in a wide range of Reynolds numbers. Computers & Fluids, 38, 433–457.MATHCrossRef
6.
Zurück zum Zitat Cabot, W., & Moin, P. (1999). Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbulence Combustion, 63, 269–291. Cabot, W., & Moin, P. (1999). Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbulence Combustion, 63, 269–291.
7.
Zurück zum Zitat Chaouat, B. (2017). The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows. Flow, Turbulence and Combustion, 99(2), 279–327.CrossRef Chaouat, B. (2017). The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows. Flow, Turbulence and Combustion, 99(2), 279–327.CrossRef
8.
Zurück zum Zitat Cherry, N. J., Hiller, R., & Latour, M. E. M. P. (1984). Unsteady measurements in a separated and reattaching flow. Journal of Fluid Mechanics, 144, 13–46.CrossRef Cherry, N. J., Hiller, R., & Latour, M. E. M. P. (1984). Unsteady measurements in a separated and reattaching flow. Journal of Fluid Mechanics, 144, 13–46.CrossRef
10.
Zurück zum Zitat Davidson, L., & Billson, M. (2006). Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region. International Journal of Heat and Fluid Flow, 27, 1028–1042.CrossRef Davidson, L., & Billson, M. (2006). Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region. International Journal of Heat and Fluid Flow, 27, 1028–1042.CrossRef
11.
Zurück zum Zitat Davidson, L., Cokljat, D., Frohlich, J., Leschziner, M., Mellen, C., & Rodi, W. (Eds.). (2003). LESFOIL: Large eddy simulation of flow around a high lift airfoil. In Notes on numerical fluid mechanics (Vol. 83). Springer. Davidson, L., Cokljat, D., Frohlich, J., Leschziner, M., Mellen, C., & Rodi, W. (Eds.). (2003). LESFOIL: Large eddy simulation of flow around a high lift airfoil. In Notes on numerical fluid mechanics (Vol. 83). Springer.
12.
Zurück zum Zitat Durbin, P. A. (1996). On the k–ε stagnation point anomaly. International Journal of Heat and Fluid Flow, 17, 89–90.CrossRef Durbin, P. A. (1996). On the k–ε stagnation point anomaly. International Journal of Heat and Fluid Flow, 17, 89–90.CrossRef
13.
Zurück zum Zitat Foroutan, H., & Yavuzkurt, S. (2014). A partially-averaged Navier-Stokes model for the simulation of turbulent swirling flow with vortex breakdown. International Journal of Heat and Fluid Flow, 50, 402–416.CrossRef Foroutan, H., & Yavuzkurt, S. (2014). A partially-averaged Navier-Stokes model for the simulation of turbulent swirling flow with vortex breakdown. International Journal of Heat and Fluid Flow, 50, 402–416.CrossRef
14.
Zurück zum Zitat Fransen, R., Morata, E. C., Duchaine, F., Gourdain, N., Gicquel, L. Y. M., & Vial, L. (2012). Comparison of RANS and LES in high pressure turbines (pp. 12–25). Toulouse: Safran Turbomeca, CERFACS. Fransen, R., Morata, E. C., Duchaine, F., Gourdain, N., Gicquel, L. Y. M., & Vial, L. (2012). Comparison of RANS and LES in high pressure turbines (pp. 12–25). Toulouse: Safran Turbomeca, CERFACS.
15.
Zurück zum Zitat Frisch, U. (1995). Turbulence, the legacy of A. N. Kolmogorov. Cambridge: Cambridge Univ. Press. Frisch, U. (1995). Turbulence, the legacy of A. N. Kolmogorov. Cambridge: Cambridge Univ. Press.
16.
Zurück zum Zitat Fröhlich, J., Mellen, C. P., Rodi, W., Temmerman, L., & Leschziner, M. A. (2005). Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. Journal of Fluid Mechanics, 526, 19–66.MathSciNetMATHCrossRef Fröhlich, J., Mellen, C. P., Rodi, W., Temmerman, L., & Leschziner, M. A. (2005). Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. Journal of Fluid Mechanics, 526, 19–66.MathSciNetMATHCrossRef
17.
Zurück zum Zitat Fröhlich, J., & von Terzi, D. (2008). Hybrid LES/RANS methods for the simulation of turbulent flows. Progress in Aerospace Sciences, 44(5), 349–377. Fröhlich, J., & von Terzi, D. (2008). Hybrid LES/RANS methods for the simulation of turbulent flows. Progress in Aerospace Sciences, 44(5), 349–377.
18.
Zurück zum Zitat Gaster, M. (1968). Growth of disturbances in both space and time. Physics of Fluids, 11(4), 723–727.CrossRef Gaster, M. (1968). Growth of disturbances in both space and time. Physics of Fluids, 11(4), 723–727.CrossRef
20.
Zurück zum Zitat Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A, 3, 1760–1765.MATHCrossRef Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A, 3, 1760–1765.MATHCrossRef
21.
Zurück zum Zitat Gritskevich, M. S., Garbaruk, A. V., Schütze, J., & Menter, F. R. (2012). Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow, Turbulence and Combustion, 88, 431–449.MATHCrossRef Gritskevich, M. S., Garbaruk, A. V., Schütze, J., & Menter, F. R. (2012). Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow, Turbulence and Combustion, 88, 431–449.MATHCrossRef
22.
Zurück zum Zitat Hain, R., Kahler, C. J., & Radespiel, R. (2009). Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. Journal of Fluid Mechanics, 630, 129–153.MATHCrossRef Hain, R., Kahler, C. J., & Radespiel, R. (2009). Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. Journal of Fluid Mechanics, 630, 129–153.MATHCrossRef
23.
Zurück zum Zitat Halstead, D. E., Wisler, D. C., Okiishi, T. H., Walker, G. J., Hodson, H. P., & Shin, H.-W. (1997). Boundary layer development in axial compressors and turbines—Part 1 of 4: Composite picture; Part 2 of 4: Compressors; Part 3 of 4: LP turbines; Part 4 of 4: Computations and analyses. ASME Journal of Turbomachinery, 119, 114–127, 426–444, 225–237, 128–139. Halstead, D. E., Wisler, D. C., Okiishi, T. H., Walker, G. J., Hodson, H. P., & Shin, H.-W. (1997). Boundary layer development in axial compressors and turbines—Part 1 of 4: Composite picture; Part 2 of 4: Compressors; Part 3 of 4: LP turbines; Part 4 of 4: Computations and analyses. ASME Journal of Turbomachinery, 119, 114–127, 426–444, 225–237, 128–139.
24.
Zurück zum Zitat Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of three-dependent viscous incompressible flow of fluid with free surfaces. Physics of Fluids, 8, 2182–2188.MathSciNetMATHCrossRef Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of three-dependent viscous incompressible flow of fluid with free surfaces. Physics of Fluids, 8, 2182–2188.MathSciNetMATHCrossRef
25.
Zurück zum Zitat He, C., Liu, Y., & Yavuzkurt, S. (2017). A dynamic delayed detached-eddy simulation model for turbulent flows. Computers & Fluids, 146, 174–189.MathSciNetMATHCrossRef He, C., Liu, Y., & Yavuzkurt, S. (2017). A dynamic delayed detached-eddy simulation model for turbulent flows. Computers & Fluids, 146, 174–189.MathSciNetMATHCrossRef
26.
Zurück zum Zitat Horton, H. (1969). A semi-empirical theory for the growth and bursting of laminar separation bubbles. HM Stationery Office. Horton, H. (1969). A semi-empirical theory for the growth and bursting of laminar separation bubbles. HM Stationery Office.
27.
Zurück zum Zitat Jansen, K. (1996). Large-eddy simulation of flow around a NACA 4412 airfoil using unstructured grids. In Annual research briefs (pp. 225–232). Center for Turbulence Research, Stanford University and NASA Ames. Jansen, K. (1996). Large-eddy simulation of flow around a NACA 4412 airfoil using unstructured grids. In Annual research briefs (pp. 225–232). Center for Turbulence Research, Stanford University and NASA Ames.
28.
Zurück zum Zitat Jones, B. M. (1934). Stalling. Journal of Royal Aeronautical Society, 38, 753–770.CrossRef Jones, B. M. (1934). Stalling. Journal of Royal Aeronautical Society, 38, 753–770.CrossRef
29.
Zurück zum Zitat Kenjereš, S., & Hanjalić, K. (2005). LES, T-RANS and hybrid simulations of thermal convection at high Ra numbers. International Journal of Heat and Fluid Flow, 27, 800–810. Kenjereš, S., & Hanjalić, K. (2005). LES, T-RANS and hybrid simulations of thermal convection at high Ra numbers. International Journal of Heat and Fluid Flow, 27, 800–810.
30.
Zurück zum Zitat Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Proceedings of the USSR Academy of Sciences, 30, 301. Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Proceedings of the USSR Academy of Sciences, 30, 301.
31.
Zurück zum Zitat Krajnovic, S., & Davidson, L. (2005). Flow around a simplified car, Part II: Understanding the flow. Journal of Fluids Engineering, 127(5), 919–928.CrossRef Krajnovic, S., & Davidson, L. (2005). Flow around a simplified car, Part II: Understanding the flow. Journal of Fluids Engineering, 127(5), 919–928.CrossRef
32.
Zurück zum Zitat Launder, B. E. (1991). An introduction to the modeling of turbulence. In VKI lecture series 1991–02, March 18–21, 1991. Von Karman Institute of Fluid Dynamics. Launder, B. E. (1991). An introduction to the modeling of turbulence. In VKI lecture series 1991–02, March 18–21, 1991. Von Karman Institute of Fluid Dynamics.
33.
Zurück zum Zitat Leonard, A. (1974). Energy cascade in large eddy simulations of turbulent fluid flows. Advances in Geophysics, 18, 237.CrossRef Leonard, A. (1974). Energy cascade in large eddy simulations of turbulent fluid flows. Advances in Geophysics, 18, 237.CrossRef
34.
Zurück zum Zitat Lesieur, M., & Métais, O. (1996). New trends in large-eddy simulations of turbulence. Annual Review of Fluid Mechanics, 28, 45–82.MathSciNetCrossRef Lesieur, M., & Métais, O. (1996). New trends in large-eddy simulations of turbulence. Annual Review of Fluid Mechanics, 28, 45–82.MathSciNetCrossRef
35.
Zurück zum Zitat Lilly, D. K. (1967). The representation of small scale turbulence in numerical simulation experiments. In Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences (Vol. 195). Lilly, D. K. (1967). The representation of small scale turbulence in numerical simulation experiments. In Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences (Vol. 195).
36.
Zurück zum Zitat Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A, 4, 633–635.CrossRef Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A, 4, 633–635.CrossRef
38.
39.
Zurück zum Zitat Liou, M.-S., & Steffen, C. J. (1993). A new flux splitting scheme. Journal of computational Physics, 107, 23–39. Liou, M.-S., & Steffen, C. J. (1993). A new flux splitting scheme. Journal of computational Physics, 107, 23–39.
40.
Zurück zum Zitat Liu, S., Meneveau, C., Katz, J. (1994). On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. Journal of Fluid Mechanics, 275, 83–119.CrossRef Liu, S., Meneveau, C., Katz, J. (1994). On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. Journal of Fluid Mechanics, 275, 83–119.CrossRef
41.
Zurück zum Zitat Mary, I., & Sagaut, P. (2002). LES of a flow around an airfoil near stall. AIAA Journal, 40, 1139.CrossRef Mary, I., & Sagaut, P. (2002). LES of a flow around an airfoil near stall. AIAA Journal, 40, 1139.CrossRef
42.
Zurück zum Zitat Mellen, C., Frohlich, J., & Rodi, W. (2003). Lessons from LESFOIL project on large eddy simulation of flow around an airfoil. AIAA Journal, 41(4), 573–581.CrossRef Mellen, C., Frohlich, J., & Rodi, W. (2003). Lessons from LESFOIL project on large eddy simulation of flow around an airfoil. AIAA Journal, 41(4), 573–581.CrossRef
43.
Zurück zum Zitat Menter, F., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4. Menter, F., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4.
44.
Zurück zum Zitat Michelassi, V. (1997). Shock-boundary layer interaction and transition modelling in turbomachinery flows. IMechE Part A Journal of Power and Energy, 211, 225–234.CrossRef Michelassi, V. (1997). Shock-boundary layer interaction and transition modelling in turbomachinery flows. IMechE Part A Journal of Power and Energy, 211, 225–234.CrossRef
45.
Zurück zum Zitat Michelassi, V., Wissink, J. G., & Rodi, W. (2003). Direct Numerical simulation, large eddy simulation and unsteady Reynolds averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: A comparison. IMechE Part A Journal of Power and Energy, 217, 403–411.CrossRef Michelassi, V., Wissink, J. G., & Rodi, W. (2003). Direct Numerical simulation, large eddy simulation and unsteady Reynolds averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: A comparison. IMechE Part A Journal of Power and Energy, 217, 403–411.CrossRef
46.
Zurück zum Zitat Morinishi, Y. (1995). Conservative properties of finite difference schemes for incompressible flow. In Annual research brief (pp. 121–132). Center for Turbulence Research, NASA Ames/Stanford University. Morinishi, Y. (1995). Conservative properties of finite difference schemes for incompressible flow. In Annual research brief (pp. 121–132). Center for Turbulence Research, NASA Ames/Stanford University.
47.
Zurück zum Zitat Nair, K. M., & Sarkar, S. (2017). Large eddy simulation of self-sustained cavity oscillation for subsonic and supersonic flows. Journal of Fluids Engineering, 139, 011102.CrossRef Nair, K. M., & Sarkar, S. (2017). Large eddy simulation of self-sustained cavity oscillation for subsonic and supersonic flows. Journal of Fluids Engineering, 139, 011102.CrossRef
48.
Zurück zum Zitat Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for the heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787–1805.MATHCrossRef Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for the heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787–1805.MATHCrossRef
49.
Zurück zum Zitat Piomelli, U., & Balaras, E. (2002). Wall-layer models for large-eddy simulation. Annual Review of Fluid Mechanics, 34, 349–374.MathSciNetMATHCrossRef Piomelli, U., & Balaras, E. (2002). Wall-layer models for large-eddy simulation. Annual Review of Fluid Mechanics, 34, 349–374.MathSciNetMATHCrossRef
50.
Zurück zum Zitat Piomelli, U., Ferziger, J., Moin, P., & Kim, J. (1989). New approximate boundary conditions for large eddy simulations of wall-bounded flows. Physics of Fluids A, 1, 1061–1068.CrossRef Piomelli, U., Ferziger, J., Moin, P., & Kim, J. (1989). New approximate boundary conditions for large eddy simulations of wall-bounded flows. Physics of Fluids A, 1, 1061–1068.CrossRef
51.
52.
Zurück zum Zitat Richardson, L. F. (1922). Weather prediction by numerical process. Cambridge: Cambridge University Press.MATH Richardson, L. F. (1922). Weather prediction by numerical process. Cambridge: Cambridge University Press.MATH
53.
Zurück zum Zitat Robert, S. K., & Yaras, M. I. (2005). Boundary layer transition affected by surface roughness and free-stream turbulence. ASME Journal of Fluids Engineering, 127(3), 449–457.CrossRef Robert, S. K., & Yaras, M. I. (2005). Boundary layer transition affected by surface roughness and free-stream turbulence. ASME Journal of Fluids Engineering, 127(3), 449–457.CrossRef
54.
Zurück zum Zitat Rodi, W., Ferziger, J. H., Breuer, M., & Pourquié, M. (1997). Status of large eddy simulation: Results of a workshop. Journal of Fluids Engineering, 119, 248–262.MATHCrossRef Rodi, W., Ferziger, J. H., Breuer, M., & Pourquié, M. (1997). Status of large eddy simulation: Results of a workshop. Journal of Fluids Engineering, 119, 248–262.MATHCrossRef
55.
Zurück zum Zitat Sagaut, P. (2000). Large eddy simulation for incompressible flows: An introduction. Springer. Sagaut, P. (2000). Large eddy simulation for incompressible flows: An introduction. Springer.
56.
Zurück zum Zitat Sagaut, P. (2013). Multiscale and multiresolution approaches in turbulence: LES, DES and hybrid RANS/LES methods: Applications and guidelines (2nd ed.). Imperial College Press. Sagaut, P. (2013). Multiscale and multiresolution approaches in turbulence: LES, DES and hybrid RANS/LES methods: Applications and guidelines (2nd ed.). Imperial College Press.
57.
Zurück zum Zitat Samson, A., & Sarkar, S. (2016). Effects of free-stream turbulence on transition of a separated boundary layer over the leading-edge of a constant thickness airfoil. ASME Journal of Fluids Engineering, 138(2), 021202(19). Samson, A., & Sarkar, S. (2016). Effects of free-stream turbulence on transition of a separated boundary layer over the leading-edge of a constant thickness airfoil. ASME Journal of Fluids Engineering, 138(2), 021202(19).
58.
Zurück zum Zitat Sarkar, S. (2007). Effects of passing wakes on a separating boundary layer along a low-pressure turbine blade through large-eddy simulation. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221, 551–563.CrossRef Sarkar, S. (2007). Effects of passing wakes on a separating boundary layer along a low-pressure turbine blade through large-eddy simulation. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221, 551–563.CrossRef
59.
Zurück zum Zitat Sarkar, S. (2008). Identification of flow structures on a LP Turbine due to periodic passing wakes. ASME Journal of Fluids Engineering, 130, 061103.CrossRef Sarkar, S. (2008). Identification of flow structures on a LP Turbine due to periodic passing wakes. ASME Journal of Fluids Engineering, 130, 061103.CrossRef
60.
Zurück zum Zitat Sarkar, S. (2009). Influence of wake structure on unsteady flow in a low pressure turbine blade passage. ASME Journal of Turbomachinery, 131(041016), 1–14. Sarkar, S. (2009). Influence of wake structure on unsteady flow in a low pressure turbine blade passage. ASME Journal of Turbomachinery, 131(041016), 1–14.
61.
Zurück zum Zitat Sarkar, S., Babu, H., & Sadique, J. (2016). Interactions of separation bubble with oncoming wakes by LES. ASME Journal of Heat Transfer, 138(2), 021703–021712.CrossRef Sarkar, S., Babu, H., & Sadique, J. (2016). Interactions of separation bubble with oncoming wakes by LES. ASME Journal of Heat Transfer, 138(2), 021703–021712.CrossRef
62.
Zurück zum Zitat Sarkar, S., & Sarkar, Sudipto. (2010). Vortex dynamics of a cylinder wake in proximity to a wall. Journal of Fluids and Structures, 26, 19–40.MATHCrossRef Sarkar, S., & Sarkar, Sudipto. (2010). Vortex dynamics of a cylinder wake in proximity to a wall. Journal of Fluids and Structures, 26, 19–40.MATHCrossRef
63.
Zurück zum Zitat Sarkar, S., & Voke, P. R. (2006). Large-eddy simulation of unsteady surface pressure over a LP turbine due to interactions of passing wakes and inflexional boundary layer. ASME Journal of Turbomachinery, 128, 221–231.CrossRef Sarkar, S., & Voke, P. R. (2006). Large-eddy simulation of unsteady surface pressure over a LP turbine due to interactions of passing wakes and inflexional boundary layer. ASME Journal of Turbomachinery, 128, 221–231.CrossRef
64.
Zurück zum Zitat Schulte, V., & Hodson, H. P. (1998). Unsteady wake-induced boundary layer transition in high lift LP turbine. ASME Journal of Turbomachinery, 120, 28–35. Schulte, V., & Hodson, H. P. (1998). Unsteady wake-induced boundary layer transition in high lift LP turbine. ASME Journal of Turbomachinery, 120, 28–35.
65.
Zurück zum Zitat Schumann, U. (1995). Stochastic backscatter of turbulence energy and scalar variance by random sub-grid scale fluxes. Proceedings of the Royal Society of London. Series A, 451, 293–318.MATH Schumann, U. (1995). Stochastic backscatter of turbulence energy and scalar variance by random sub-grid scale fluxes. Proceedings of the Royal Society of London. Series A, 451, 293–318.MATH
66.
Zurück zum Zitat Shur, M., Spalart, P., Strelets, M., & Travin, A. (1999). Detached-eddy simulation of an airfoil at high angle of attack. Engineering Turbulence Modeling Experiments, 4, 669–678.CrossRef Shur, M., Spalart, P., Strelets, M., & Travin, A. (1999). Detached-eddy simulation of an airfoil at high angle of attack. Engineering Turbulence Modeling Experiments, 4, 669–678.CrossRef
67.
Zurück zum Zitat Shur, M., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638–1649.CrossRef Shur, M., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638–1649.CrossRef
68.
Zurück zum Zitat Smagorinsky, J. (1963). General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review, 91, 99.CrossRef Smagorinsky, J. (1963). General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review, 91, 99.CrossRef
69.
Zurück zum Zitat Spalart, P. R. (2009). Detached-eddy simulation. Annual Review of Fluid Mechanics, 41, 181–202.MATHCrossRef Spalart, P. R. (2009). Detached-eddy simulation. Annual Review of Fluid Mechanics, 41, 181–202.MATHCrossRef
70.
Zurück zum Zitat Spalart, P. R., Deck, S., Shur, M., Squires, K., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20, 181–195.MATHCrossRef Spalart, P. R., Deck, S., Shur, M., Squires, K., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20, 181–195.MATHCrossRef
71.
Zurück zum Zitat Spalart, P. R., & Strelets, M. K. (2000). Mechanisms of transition and heat transfer in a separation bubble. Journal of Fluid Mechanics, 403, 329–349.MATHCrossRef Spalart, P. R., & Strelets, M. K. (2000). Mechanisms of transition and heat transfer in a separation bubble. Journal of Fluid Mechanics, 403, 329–349.MATHCrossRef
72.
Zurück zum Zitat Sreenivasan, K. R. (1991). Fractals and multifractals in turbulence. Annual Review of Fluid Mechanics, 23, 539–600.MathSciNetCrossRef Sreenivasan, K. R. (1991). Fractals and multifractals in turbulence. Annual Review of Fluid Mechanics, 23, 539–600.MathSciNetCrossRef
73.
Zurück zum Zitat Sreenivasan, K. R., & Antonia, R. A. (1997). The phenomenology of small-scale turbulence. Annual Review of Fluid Mechanics, 29, 435–472.MathSciNetCrossRef Sreenivasan, K. R., & Antonia, R. A. (1997). The phenomenology of small-scale turbulence. Annual Review of Fluid Mechanics, 29, 435–472.MathSciNetCrossRef
74.
Zurück zum Zitat Stadtmüller, P. (2001). Investigation of wake-induced transition on the LP turbine cascade T106 A-EIZ, DFG-VerbundprojectFo 136/11, version 1.0, University of the Armed Forces Munich, Germany. Stadtmüller, P. (2001). Investigation of wake-induced transition on the LP turbine cascade T106 A-EIZ, DFG-VerbundprojectFo 136/11, version 1.0, University of the Armed Forces Munich, Germany.
75.
Zurück zum Zitat Stieger, R., Hollis, D., & Hodson, R. (2003). Unsteady surface pressures due to wake induced transition in laminar separation bubble on a LP turbine cascade. ASME Papar No. GT2003-38303. Stieger, R., Hollis, D., & Hodson, R. (2003). Unsteady surface pressures due to wake induced transition in laminar separation bubble on a LP turbine cascade. ASME Papar No. GT2003-38303.
76.
Zurück zum Zitat Strelets, M. (2001). Detached eddy simulation of massively separated flows. In 39th AIAA, Aerospace Sciences Meeting and Exhibit, Reno, NV. Strelets, M. (2001). Detached eddy simulation of massively separated flows. In 39th AIAA, Aerospace Sciences Meeting and Exhibit, Reno, NV.
77.
Zurück zum Zitat Tabor, G. R., & Baba-Ahmadi, M. H. (2010). Inlet conditions for large eddy simulation: A review. Computers & Fluids, 39(4), 553–567.MathSciNetMATHCrossRef Tabor, G. R., & Baba-Ahmadi, M. H. (2010). Inlet conditions for large eddy simulation: A review. Computers & Fluids, 39(4), 553–567.MathSciNetMATHCrossRef
78.
Zurück zum Zitat Temmerman, L., Hadžiadbic, M., Leschziner, M., & Hanjalić, K. (2005). A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. International Journal of Heat and Fluid Flow, 26, 173–190.CrossRef Temmerman, L., Hadžiadbic, M., Leschziner, M., & Hanjalić, K. (2005). A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. International Journal of Heat and Fluid Flow, 26, 173–190.CrossRef
79.
Zurück zum Zitat Tucker, P. G. (2011). Computation of unsteady turbomachinery flows: Part 2-LES and hybrids. Progress in Aerospace Sciences, 47(7), 546–569.CrossRef Tucker, P. G. (2011). Computation of unsteady turbomachinery flows: Part 2-LES and hybrids. Progress in Aerospace Sciences, 47(7), 546–569.CrossRef
80.
Zurück zum Zitat Tucker, P., & Davidson, L. (2004). Zonal k-l based large eddy simulation. Computers & Fluids, 33(2), 267–287.MATHCrossRef Tucker, P., & Davidson, L. (2004). Zonal k-l based large eddy simulation. Computers & Fluids, 33(2), 267–287.MATHCrossRef
81.
Zurück zum Zitat Van Driest, E. R. (1956). On turbulent flow near a wall. Journal of the Aeronautical Sciences, 23, 1007.MATHCrossRef Van Driest, E. R. (1956). On turbulent flow near a wall. Journal of the Aeronautical Sciences, 23, 1007.MATHCrossRef
82.
Zurück zum Zitat Voke, P. R. (1996). Subgrid-scale modeling at low mesh Reynolds number. Theoretical and Computational Fluid Dynamics, 8(2), 131–143.MATHCrossRef Voke, P. R. (1996). Subgrid-scale modeling at low mesh Reynolds number. Theoretical and Computational Fluid Dynamics, 8(2), 131–143.MATHCrossRef
83.
Zurück zum Zitat Watmuff, J. H. (1999). Evolution of a wave packet into vortex loops in a laminar separation bubble. Journal of Fluid Mechanics, 397, 119–169.MathSciNetMATHCrossRef Watmuff, J. H. (1999). Evolution of a wave packet into vortex loops in a laminar separation bubble. Journal of Fluid Mechanics, 397, 119–169.MathSciNetMATHCrossRef
84.
Zurück zum Zitat Wissink, J. G. (2002). DNS of separating, low Reynolds number flow in a turbine cascade with incoming wakes. In 5th International Symposium on Engineering Turbulence Modelling and Experiments (pp. 731–740). Mallorca, Spain: Elsevier.CrossRef Wissink, J. G. (2002). DNS of separating, low Reynolds number flow in a turbine cascade with incoming wakes. In 5th International Symposium on Engineering Turbulence Modelling and Experiments (pp. 731–740). Mallorca, Spain: Elsevier.CrossRef
85.
Zurück zum Zitat Wu, X., & Durbin, P. A. (2001). Evidence of longitudinal vortices evolved from distorted wakes in turbine passage. Journal of Fluid Mechanics, 446, 199–228.MATHCrossRef Wu, X., & Durbin, P. A. (2001). Evidence of longitudinal vortices evolved from distorted wakes in turbine passage. Journal of Fluid Mechanics, 446, 199–228.MATHCrossRef
86.
Zurück zum Zitat Wu, X., Jacobs, R. G., Hunt, J. R. C., & Durbin, P. A. (1999). Simulation of boundary layer transition induced by periodically passing wakes. Journal of Fluid Mechanics, 398, 109–153.MATHCrossRef Wu, X., Jacobs, R. G., Hunt, J. R. C., & Durbin, P. A. (1999). Simulation of boundary layer transition induced by periodically passing wakes. Journal of Fluid Mechanics, 398, 109–153.MATHCrossRef
87.
Zurück zum Zitat Wu, X., & Squires, K. D. (1998). Numerical investigation of the turbulent boundary layer over a bump. Journal of Fluid Mechanics, 362, 229–271.MATHCrossRef Wu, X., & Squires, K. D. (1998). Numerical investigation of the turbulent boundary layer over a bump. Journal of Fluid Mechanics, 362, 229–271.MATHCrossRef
88.
Zurück zum Zitat Xiao, X., Edwards, J., & Hassan, H. (2003). Inflow boundary conditions for LES/RANS simulations with applications to shock wave boundary layer interactions, Reno, NV, AIAA paper 2003-0079. Xiao, X., Edwards, J., & Hassan, H. (2003). Inflow boundary conditions for LES/RANS simulations with applications to shock wave boundary layer interactions, Reno, NV, AIAA paper 2003-0079.
89.
Zurück zum Zitat Yang, Z. Y., & Voke, P. R. (2001). Large-eddy simulation of boundary layer separation and transition at a change of surface curvature. Journal of Fluid Mechanics, 439, 305–333.MATHCrossRef Yang, Z. Y., & Voke, P. R. (2001). Large-eddy simulation of boundary layer separation and transition at a change of surface curvature. Journal of Fluid Mechanics, 439, 305–333.MATHCrossRef
90.
Zurück zum Zitat Zang, Y., Street, R. L., & Koseff, J. (1993). A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Physics of Fluids A, 5, 3186–3196.MATHCrossRef Zang, Y., Street, R. L., & Koseff, J. (1993). A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Physics of Fluids A, 5, 3186–3196.MATHCrossRef
Metadaten
Titel
Large Eddy Simulation of Flows of Engineering Interest: A Review
verfasst von
S. Sarkar
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2670-1_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.