Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2019

06.07.2018

Large-Eddy Simulation of the Unsteady Full 3D Rim Seal Flow in a One-Stage Axial-Flow Turbine

verfasst von: Alexej Pogorelov, Matthias Meinke, Wolfgang Schröder

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flow field in a complete one-stage axial-flow turbine with 30 stator and 62 rotor blades is investigated by large-eddy simulation (LES). To solve the compressible Navier-Stokes equations, a massively parallelized finite-volume flow solver based on an efficient Cartesian cut-cell/level-set approach, which ensures a strict conservation of mass, momentum and energy, is used. This numerical method contains two adaptive Cartesian meshes, one mesh to track the embedded surface boundaries and a second mesh to resolve the fluid domain and to solve the conservation equations. The overall approach allows large scale simulations of turbomachinery applications with multiple relatively moving boundaries in a single frame of reference. The relative motion of the geometries is described by a kinematic motion level-set interface method. The focus of the numerical analysis is on the flow inside the rim seal between the stator and the rotor disks. Full \(360^{\circ }\) computations of the turbine stage are performed for two rim seal configurations. First, the impact of the mesh resolution on the LES results is analyzed for the single lip rim seal configuration. Second, the LES results are compared to experimental data, followed by a detailed analysis of the unsteady flow field. For the single lip rim seal configuration, two modes unrelated to the rotor frequency and its harmonics are identified inside the rotor-stator wheel space, where the first more dominant mode shows a major impact on the ingress of the hot gas into the rotor-stator wheel space. The second mode is a counter-rotating mode which results from the interaction of the first mode with the flow field downstream of the stator blades. Third, at the same operating condition a modified configuration with a double lip rim seal is investigated and compared to the reference configuration to demonstrate the impact of the rim seal geometry on the overall flow field. The additional lip on the rotor disk damps the aforementioned modes and reduces the ingress of the hot gas resulting in an increase of the cooling effectiveness inside the rotor-stator wheel space, which is in a good agreement with the experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Owen, J.M.: Prediction of ingestion through turbine rim seals— part ii: externally induced and combined ingress. ASME J. Turbomach. 133(3), 031006 (2011)CrossRef Owen, J.M.: Prediction of ingestion through turbine rim seals— part ii: externally induced and combined ingress. ASME J. Turbomach. 133(3), 031006 (2011)CrossRef
2.
Zurück zum Zitat Owen, J.M.: Prediction of ingestion through turbine rim seals— part i: rotationally induced ingress. ASME J. Turbomach. 133(3), 031005 (2011)CrossRef Owen, J.M.: Prediction of ingestion through turbine rim seals— part i: rotationally induced ingress. ASME J. Turbomach. 133(3), 031005 (2011)CrossRef
3.
Zurück zum Zitat Owen, J.M.: Theoretical modelling of hot gas ingestion through turbine rim seals. Propul. Power Res. 1(1), 1–11 (2012)MathSciNetCrossRef Owen, J.M.: Theoretical modelling of hot gas ingestion through turbine rim seals. Propul. Power Res. 1(1), 1–11 (2012)MathSciNetCrossRef
4.
Zurück zum Zitat Bayley, F.J., Owen, J.M.: Flow between a rotating and a stationary disc. Aeronaut. Q. 20(4), 333–354 (1969)CrossRef Bayley, F.J., Owen, J.M.: Flow between a rotating and a stationary disc. Aeronaut. Q. 20(4), 333–354 (1969)CrossRef
5.
Zurück zum Zitat Bayley, F.J., Owen, J.M.: Fluid dynamics of a shrouded disk system with a radial outflow of coolant. J. Eng. Power 92(3), 335–341 (1970)CrossRef Bayley, F.J., Owen, J.M.: Fluid dynamics of a shrouded disk system with a radial outflow of coolant. J. Eng. Power 92(3), 335–341 (1970)CrossRef
6.
Zurück zum Zitat Bhavnani, S.H., Khilnani, V.I., Tsai, L.-C., Khodadadi, J.M., Goodling, J.S.: Effective sealing of a disk cavity using a double-toothed rim seal. ASME Paper No. 92-GT-379 (1992) Bhavnani, S.H., Khilnani, V.I., Tsai, L.-C., Khodadadi, J.M., Goodling, J.S.: Effective sealing of a disk cavity using a double-toothed rim seal. ASME Paper No. 92-GT-379 (1992)
7.
Zurück zum Zitat Phadke, U.P., Owen, J.M.: Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems: part i: the behavior of simple shrouded rotating-disk systems in quiescent environment. Int. J. Heat Fluid Flow 9(2), 98–105 (1988)CrossRef Phadke, U.P., Owen, J.M.: Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems: part i: the behavior of simple shrouded rotating-disk systems in quiescent environment. Int. J. Heat Fluid Flow 9(2), 98–105 (1988)CrossRef
8.
Zurück zum Zitat Phadke, U.P., Owen, J.M.: Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems: part ii: The performance of simple seals in a quasi-axisymmetric external flow. Int. J. Heat Fluid Flow 9(2), 106–112 (1988)CrossRef Phadke, U.P., Owen, J.M.: Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems: part ii: The performance of simple seals in a quasi-axisymmetric external flow. Int. J. Heat Fluid Flow 9(2), 106–112 (1988)CrossRef
9.
Zurück zum Zitat Phadke, U.P., Owen, J.M.: Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems: part iii: the effects of nonaxisymmetric external flow on seal performance. Int. J. Heat Fluid Flow 9(2), 113–117 (1988)CrossRef Phadke, U.P., Owen, J.M.: Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems: part iii: the effects of nonaxisymmetric external flow on seal performance. Int. J. Heat Fluid Flow 9(2), 113–117 (1988)CrossRef
10.
Zurück zum Zitat Bohn, D., Wolff, M.: Improved formulation to determine minimum sealing flow – cw, min – for different sealing configurations. ASME Paper No. GT2003-38465 (2003) Bohn, D., Wolff, M.: Improved formulation to determine minimum sealing flow – cw, min – for different sealing configurations. ASME Paper No. GT2003-38465 (2003)
11.
Zurück zum Zitat Teuber, R., Li, Y.S., Maltson, J., Wilson, M., Lock, G., Owen, J.M.: Computational extrapolation of turbine sealing effectiviness from test rig to engine conditions. ASME Paper No. GT2012-68490 (2012) Teuber, R., Li, Y.S., Maltson, J., Wilson, M., Lock, G., Owen, J.M.: Computational extrapolation of turbine sealing effectiviness from test rig to engine conditions. ASME Paper No. GT2012-68490 (2012)
12.
Zurück zum Zitat Owen, J.M., Pountney, O., Lock, G.: Prediction of ingress through turbine rim seals—part ii: combined ingress. ASME J. Turbomach. 134(3), 031013 (2012)CrossRef Owen, J.M., Pountney, O., Lock, G.: Prediction of ingress through turbine rim seals—part ii: combined ingress. ASME J. Turbomach. 134(3), 031013 (2012)CrossRef
13.
Zurück zum Zitat Owen, J.M., Zhou, K., Pountney, O., Wilson, M., Lock, G.: Prediction of ingress through turbine rim seals—part i: externally induced ingress. ASME J. Turbomach. 134(3), 031012 (2012)CrossRef Owen, J.M., Zhou, K., Pountney, O., Wilson, M., Lock, G.: Prediction of ingress through turbine rim seals—part i: externally induced ingress. ASME J. Turbomach. 134(3), 031012 (2012)CrossRef
14.
Zurück zum Zitat Sangan, C., Pountney, O., Zhou, K., Wilson, M., Owen, J.M., Lock, G.: Experimental measurements of ingestion through turbine rim seals—part iii: single and double seals. ASME J. Turbomach. 135(5), 051011 (2013)CrossRef Sangan, C., Pountney, O., Zhou, K., Wilson, M., Owen, J.M., Lock, G.: Experimental measurements of ingestion through turbine rim seals—part iii: single and double seals. ASME J. Turbomach. 135(5), 051011 (2013)CrossRef
15.
Zurück zum Zitat Sangan, C., Pountney, O., Zhou, K., Wilson, M., Owen, J.M., Lock, G.: Experimental measurements of ingestion through turbine rim seals, part 1: externally-induced ingress. ASME J. Turbomach. 135(2), 021012 (2013)CrossRef Sangan, C., Pountney, O., Zhou, K., Wilson, M., Owen, J.M., Lock, G.: Experimental measurements of ingestion through turbine rim seals, part 1: externally-induced ingress. ASME J. Turbomach. 135(2), 021012 (2013)CrossRef
16.
Zurück zum Zitat Sangan, C., Pountney, O., Zhou, K., Wilson, M., Owen, J.M., Lock, G.: Experimental measurements of ingestion through turbine rim seals, part 2: rotationally-induced ingress. ASME J. Turbomach. 135(2), 021013 (2013)CrossRef Sangan, C., Pountney, O., Zhou, K., Wilson, M., Owen, J.M., Lock, G.: Experimental measurements of ingestion through turbine rim seals, part 2: rotationally-induced ingress. ASME J. Turbomach. 135(2), 021013 (2013)CrossRef
17.
Zurück zum Zitat Dunn, D.M., Zhou, D.W., Squires, K.D., Roy, R.P., Saha, K., Moon, H.K.: Flow field in a single-stage model air turbine rotor-stator cavity with pre-swirled purge flow. ASME Paper No. GT2010-22869 (2010) Dunn, D.M., Zhou, D.W., Squires, K.D., Roy, R.P., Saha, K., Moon, H.K.: Flow field in a single-stage model air turbine rotor-stator cavity with pre-swirled purge flow. ASME Paper No. GT2010-22869 (2010)
18.
Zurück zum Zitat Hills, N.J., Chew, J.W., Turner, A.B.: Computational and mathematical modeling of turbine rim seal ingestion. ASME J. Turbomach. 124(2), 306–315 (2002)CrossRef Hills, N.J., Chew, J.W., Turner, A.B.: Computational and mathematical modeling of turbine rim seal ingestion. ASME J. Turbomach. 124(2), 306–315 (2002)CrossRef
19.
Zurück zum Zitat Jakoby, R., Zierer, T., Lindblad, K., Larsson, J., Devito, L., Bohn, D.E., Funcke, J., Decker, A.: Numerical simulation of the unsteady flow field in an axial gas turbine rim seal configuration. ASME Paper No. GT2004-53829 (2004) Jakoby, R., Zierer, T., Lindblad, K., Larsson, J., Devito, L., Bohn, D.E., Funcke, J., Decker, A.: Numerical simulation of the unsteady flow field in an axial gas turbine rim seal configuration. ASME Paper No. GT2004-53829 (2004)
20.
Zurück zum Zitat Johnson, B.V., Jacoby, R., Bohn, D., Cunat, D.: A method for estimating the influence of time-dependent vane and blade pressure fields on turbine rim seal ingestion. ASME J. Turbomach. 131(2), 021005 (2009)CrossRef Johnson, B.V., Jacoby, R., Bohn, D., Cunat, D.: A method for estimating the influence of time-dependent vane and blade pressure fields on turbine rim seal ingestion. ASME J. Turbomach. 131(2), 021005 (2009)CrossRef
21.
Zurück zum Zitat Julien, S., Lefrancois, J., Dumas, G., Boutet-Blais G., Lapointe, S., Caron, J.-F.: Simulations of flow ingestion and related structures in a turbine disk cavity. ASME Paper No. GT2010-22729 (2010) Julien, S., Lefrancois, J., Dumas, G., Boutet-Blais G., Lapointe, S., Caron, J.-F.: Simulations of flow ingestion and related structures in a turbine disk cavity. ASME Paper No. GT2010-22729 (2010)
22.
Zurück zum Zitat Laskowski, G.M., Bunker, R.S., Bailey, J.C., Kapetanovic, S., Itzel, G.M., Sullivan, M.A., Farrell, T.R.: An investigation of turbine wheelspace cooling flow interactions with a transonic hot gas path—part ii: Cfd simulations. ASME J. Turbomach. 133(4), 041020 (2011)CrossRef Laskowski, G.M., Bunker, R.S., Bailey, J.C., Kapetanovic, S., Itzel, G.M., Sullivan, M.A., Farrell, T.R.: An investigation of turbine wheelspace cooling flow interactions with a transonic hot gas path—part ii: Cfd simulations. ASME J. Turbomach. 133(4), 041020 (2011)CrossRef
23.
Zurück zum Zitat Mirzamoghadam, A.V., Heitland, G., Hosseinu, K.M.: The effect of annulus performance parameters on rotor-stator cavity sealing flow. ASME Paper No. GT2009-59380 (2009) Mirzamoghadam, A.V., Heitland, G., Hosseinu, K.M.: The effect of annulus performance parameters on rotor-stator cavity sealing flow. ASME Paper No. GT2009-59380 (2009)
24.
Zurück zum Zitat Mirzamoghadam, A.V., Heitland, G., Morris, M.C., Smoke, J., Malak, M., Howe, J.: 3d cfd ingestion evaluation of a high pressure turbine rim seal disk cavity. ASME Paper No. GT2008-50531 (2008) Mirzamoghadam, A.V., Heitland, G., Morris, M.C., Smoke, J., Malak, M., Howe, J.: 3d cfd ingestion evaluation of a high pressure turbine rim seal disk cavity. ASME Paper No. GT2008-50531 (2008)
25.
Zurück zum Zitat Rabs, M., Benra, F.-K., Dohmen, H.J., Schneider, O.: Investigation of flow instabilities near the rim cavity of a 1.5 stage gas turbine. ASME Paper No. GT2009-59965 (2009) Rabs, M., Benra, F.-K., Dohmen, H.J., Schneider, O.: Investigation of flow instabilities near the rim cavity of a 1.5 stage gas turbine. ASME Paper No. GT2009-59965 (2009)
26.
Zurück zum Zitat Wang, C.-Z., Johnson, B.V., Jong, F.D., Vashist, T.K., Dutta, R.: Comparison of flow characteristics in axial-gap seals for close- and wide-spaced turbine stages. ASME Paper No. GT2007-27909 (2007) Wang, C.-Z., Johnson, B.V., Jong, F.D., Vashist, T.K., Dutta, R.: Comparison of flow characteristics in axial-gap seals for close- and wide-spaced turbine stages. ASME Paper No. GT2007-27909 (2007)
27.
Zurück zum Zitat Zhou, D.W., Roy, R.P., Wang, C.-Z., Glahn, J.A.: Main gas ingestion in a turbine stage for three rim cavity configurations. ASME J. Turbomach. 133(3), 031023 (2011)CrossRef Zhou, D.W., Roy, R.P., Wang, C.-Z., Glahn, J.A.: Main gas ingestion in a turbine stage for three rim cavity configurations. ASME J. Turbomach. 133(3), 031023 (2011)CrossRef
28.
Zurück zum Zitat O’Mahoney, T.S.D., HiIIs, N.J., Chew, J.W., Scanlon, T.: Large-eddy simulation of rim seal ingestion. ASME Paper No. GT2010-22962 (2010) O’Mahoney, T.S.D., HiIIs, N.J., Chew, J.W., Scanlon, T.: Large-eddy simulation of rim seal ingestion. ASME Paper No. GT2010-22962 (2010)
29.
Zurück zum Zitat Beard, P.F., Gao, F., Chana, K.S., Chew, J.: Unsteady flow phenomena in turbine rim seals. J. Eng. Gas Turbines Power 139(3), 032501 (2016)CrossRef Beard, P.F., Gao, F., Chana, K.S., Chew, J.: Unsteady flow phenomena in turbine rim seals. J. Eng. Gas Turbines Power 139(3), 032501 (2016)CrossRef
30.
Zurück zum Zitat Cao, C., Chew, J.W., Millington, P.R., Hogg, S.I.: Interaction of rim seal and annulus flows in an axial flow turbine. J. Eng. Gas Turbines Power 126(4), 786–793 (2004)CrossRef Cao, C., Chew, J.W., Millington, P.R., Hogg, S.I.: Interaction of rim seal and annulus flows in an axial flow turbine. J. Eng. Gas Turbines Power 126(4), 786–793 (2004)CrossRef
31.
Zurück zum Zitat Savov, S.S., Atkins, N.R., Uchida, S.: A comparison of single and double lip rim seal geometries. J. Eng. Gas Turbines Power 139(11), 112601 (2017)CrossRef Savov, S.S., Atkins, N.R., Uchida, S.: A comparison of single and double lip rim seal geometries. J. Eng. Gas Turbines Power 139(11), 112601 (2017)CrossRef
32.
Zurück zum Zitat Gao, F., Chew, J., Beard, P.F., Amirante, D., Hills, N.J.: Numerical studies of turbine rim sealing flows on a chute seal configuration. ETC2017-284 (2017) Gao, F., Chew, J., Beard, P.F., Amirante, D., Hills, N.J.: Numerical studies of turbine rim sealing flows on a chute seal configuration. ETC2017-284 (2017)
33.
Zurück zum Zitat Tyacke, J., Tucker, P., Loveday, R., Vadlamani, N., Watson, R., Naqavi, I., Yang, X.: Large eddy simulation for turbines: methodologies, cost and future outlooks. J. Turbomach. 136(6), 061009 (2013)CrossRef Tyacke, J., Tucker, P., Loveday, R., Vadlamani, N., Watson, R., Naqavi, I., Yang, X.: Large eddy simulation for turbines: methodologies, cost and future outlooks. J. Turbomach. 136(6), 061009 (2013)CrossRef
34.
Zurück zum Zitat Sutherland, W.: The viscosity of gases and molecular force. Philos. Mag. 36(223), 507–531 (1893)CrossRefMATH Sutherland, W.: The viscosity of gases and molecular force. Philos. Mag. 36(223), 507–531 (1893)CrossRefMATH
36.
Zurück zum Zitat Lintermann, A., Schlimpert, S., Grimmen, J.H., Günther, C., Meinke, M., Schröder, W.: Massively parallel grid generation on hpc systems. Comput. Methods Appl. Mech. Eng. 277, 131–153 (2014)MathSciNetCrossRefMATH Lintermann, A., Schlimpert, S., Grimmen, J.H., Günther, C., Meinke, M., Schröder, W.: Massively parallel grid generation on hpc systems. Comput. Methods Appl. Mech. Eng. 277, 131–153 (2014)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4–6), 199–228 (1992)CrossRef Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4–6), 199–228 (1992)CrossRef
38.
Zurück zum Zitat Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRef Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRef
39.
Zurück zum Zitat Alkishriwi, N., Meinke, M., Schröder, W.: A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. Comput. Fluids 35 (10), 1126–1136 (2006)CrossRefMATH Alkishriwi, N., Meinke, M., Schröder, W.: A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. Comput. Fluids 35 (10), 1126–1136 (2006)CrossRefMATH
40.
Zurück zum Zitat Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for large-eddy simulation. Comput. Fluids 31(4–7), 695–718 (2002)CrossRefMATH Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for large-eddy simulation. Comput. Fluids 31(4–7), 695–718 (2002)CrossRefMATH
41.
Zurück zum Zitat Pogorelov, A., Meinke, M., Schröder, W.: Cut-cell method based large-eddy simulation of tip-leakage flow. Phys. Fluids 27(7), 075106 (2015)CrossRef Pogorelov, A., Meinke, M., Schröder, W.: Cut-cell method based large-eddy simulation of tip-leakage flow. Phys. Fluids 27(7), 075106 (2015)CrossRef
43.
Zurück zum Zitat Renze, P., Schröder, W., Meinke, M.: Large-eddy simulation of film cooling flows at density gradients. Int. J. Heat Fluid Flow 29(1), 18–34 (2008)CrossRefMATH Renze, P., Schröder, W., Meinke, M.: Large-eddy simulation of film cooling flows at density gradients. Int. J. Heat Fluid Flow 29(1), 18–34 (2008)CrossRefMATH
44.
Zurück zum Zitat Rütten, F., Schröder, W., Meinke, M.: Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe. Phys. Fluids 17(3), 035107 (2005)CrossRefMATH Rütten, F., Schröder, W., Meinke, M.: Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe. Phys. Fluids 17(3), 035107 (2005)CrossRefMATH
45.
Zurück zum Zitat Schneiders, L., Günther, C., Meinke, M., Schröder, W.: An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 62–86 (2016)MathSciNetCrossRefMATH Schneiders, L., Günther, C., Meinke, M., Schröder, W.: An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 62–86 (2016)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Mavriplis, D.J.: Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. AIAA 2003-3986 (2003) Mavriplis, D.J.: Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. AIAA 2003-3986 (2003)
47.
Zurück zum Zitat Berger, M.J., Aftosmis, M.J.: Progress towards a Cartesian cut-cell method for viscous compressible flow. AIAA 2012-1301 (2012) Berger, M.J., Aftosmis, M.J.: Progress towards a Cartesian cut-cell method for viscous compressible flow. AIAA 2012-1301 (2012)
48.
Zurück zum Zitat Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)MathSciNetCrossRef Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)MathSciNetCrossRef
49.
Zurück zum Zitat Hartmann, D., Meinke, M., Schröder, W.: A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids. Comput. Methods Appl. Mech. Eng. 200(9–12), 1038–1052 (2011)MathSciNetCrossRefMATH Hartmann, D., Meinke, M., Schröder, W.: A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids. Comput. Methods Appl. Mech. Eng. 200(9–12), 1038–1052 (2011)MathSciNetCrossRefMATH
50.
Zurück zum Zitat Jameson, A., Mavriplis, D.: Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh. AIAA J. 24(4), 616–618 (1986)MATH Jameson, A., Mavriplis, D.: Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh. AIAA J. 24(4), 616–618 (1986)MATH
51.
Zurück zum Zitat Günther, C., Meinke, M., Schröder, W.: A flexible level-set approach for tracking multiple interacting interfaces in embedded boundary methods. Comput. Fluids 102, 182–202 (2014)CrossRef Günther, C., Meinke, M., Schröder, W.: A flexible level-set approach for tracking multiple interacting interfaces in embedded boundary methods. Comput. Fluids 102, 182–202 (2014)CrossRef
52.
Zurück zum Zitat Hartmann, D., Meinke, M., Schröder, W.: Differential equation based constrained reinitialization for level set methods. J. Comput. Phys. 227(14), 6821–6845 (2008)MathSciNetCrossRefMATH Hartmann, D., Meinke, M., Schröder, W.: Differential equation based constrained reinitialization for level set methods. J. Comput. Phys. 227(14), 6821–6845 (2008)MathSciNetCrossRefMATH
53.
Zurück zum Zitat Hartmann, D., Meinke, M., Schröder, W.: The constrained reinitialization equation for level set methods. J. Comput. Phys. 229(5), 1514–1535 (2010)MathSciNetCrossRefMATH Hartmann, D., Meinke, M., Schröder, W.: The constrained reinitialization equation for level set methods. J. Comput. Phys. 229(5), 1514–1535 (2010)MathSciNetCrossRefMATH
54.
Zurück zum Zitat Bohn, D., Rudzinski, B., Sürken, N., Gärtner, W.: Experimental and numerical investigation on the influence of rotorblades on hot gas ingestion into the upstream cavity of an axial turbine stage. ASME Paper No. 2000-GT-284 (2000) Bohn, D., Rudzinski, B., Sürken, N., Gärtner, W.: Experimental and numerical investigation on the influence of rotorblades on hot gas ingestion into the upstream cavity of an axial turbine stage. ASME Paper No. 2000-GT-284 (2000)
55.
Zurück zum Zitat Freund, J.B.: Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA J. 35(4), 740–743 (1997)CrossRefMATH Freund, J.B.: Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA J. 35(4), 740–743 (1997)CrossRefMATH
56.
Zurück zum Zitat Kunnen, R.P.J., Siewert, C., Meinke, M., Schröder, W., Beheng, K.D.: Numerically determined geometric collision kernels in spatially evolving isotropic turbulence relevant for droplets in clouds. Atmos. Res. 127, 8–21 (2013)CrossRef Kunnen, R.P.J., Siewert, C., Meinke, M., Schröder, W., Beheng, K.D.: Numerically determined geometric collision kernels in spatially evolving isotropic turbulence relevant for droplets in clouds. Atmos. Res. 127, 8–21 (2013)CrossRef
57.
Zurück zum Zitat Bohn, D., Wolff, M.: Entwicklung von Berechnungsansätzen zur Optimierung von Sperrgassystemen für Rotor/Stator-Kavitäten in Gasturbinen. FVV-Vorhaben Nr.: 067270, Frankfurt (2001) Bohn, D., Wolff, M.: Entwicklung von Berechnungsansätzen zur Optimierung von Sperrgassystemen für Rotor/Stator-Kavitäten in Gasturbinen. FVV-Vorhaben Nr.: 067270, Frankfurt (2001)
Metadaten
Titel
Large-Eddy Simulation of the Unsteady Full 3D Rim Seal Flow in a One-Stage Axial-Flow Turbine
verfasst von
Alexej Pogorelov
Matthias Meinke
Wolfgang Schröder
Publikationsdatum
06.07.2018
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2019
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9956-9

Weitere Artikel der Ausgabe 1/2019

Flow, Turbulence and Combustion 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.