Skip to main content

2018 | OriginalPaper | Buchkapitel

Large-Scale Continuous Mobility Monitoring of Parkinson’s Disease Patients Using Smartphones

verfasst von : Wei-Yi Cheng, Florian Lipsmeier, Andrew Creigh, Alf Scotland, Timothy Kilchenmann, Liping Jin, Jens Schjodt-Eriksen, Detlef Wolf, Yan-Ping Zhang-Schaerer, Ignacio Fernandez Garcia, Juliane Siebourg-Polster, Jay Soto, Lynne Verselis, Meret Martin Facklam, Frank Boess, Martin Koller, Machael Grundman, Andreas U. Monsch, Ron Postuma, Anirvan Ghosh, Thomas Kremer, Kirsten I. Taylor, Christian Czech, Christian Gossens, Michael Lindemann

Erschienen in: Wireless Mobile Communication and Healthcare

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Smartphone-based assessments have been considered a potential solution for continuously monitoring gait and mobility in mild to moderate Parkinson’s disease (PD) patients. Forty-four PD patients from cohorts 4 to 6 of the Multiple Ascending Dose (MAD) study of PRX002/RG7935 and thirty-five age- and gender-matched healthy individuals (i.e. healthy controls - HC) in a separate study performed smartphone-based assessments for up to 24 weeks and up to 6 weeks, respectively. The assessments included “active gait tests”, where all participants were asked to walk for 30 s with at least one 180\(^\circ \) turn, and “passive monitoring”, in which subjects carried the smartphone in a pocket or fanny pack as part of their daily routine. In total, over 6,600 active gait tests and over 30,000 h of passive monitoring data were collected. A mobility analysis indicates that patients with PD are less mobile than HCs, as manifested in time spent in gait-related activities, number of turns and sit-to-stand transitions, and power per step. It supports the potential use of smartphones for continuous mobility monitoring in future clinical practice and drug development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ramaker, C., Marinus, J., Stiggelbout, A.M., van Hilten, B.J.: Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov. Disord. 17(5), 867–876 (2002)CrossRef Ramaker, C., Marinus, J., Stiggelbout, A.M., van Hilten, B.J.: Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov. Disord. 17(5), 867–876 (2002)CrossRef
2.
Zurück zum Zitat González, R.C., López, A.M., Rodriguez-Uría, J., Álvarez, D., Alvarez, J.C.: Real-time gait event detection for normal subjects from lower trunk accelerations. Gait Posture 31, 322–325 (2010)CrossRef González, R.C., López, A.M., Rodriguez-Uría, J., Álvarez, D., Alvarez, J.C.: Real-time gait event detection for normal subjects from lower trunk accelerations. Gait Posture 31, 322–325 (2010)CrossRef
3.
Zurück zum Zitat Zijlstra, A., Zijlstra, W.: Trunk-acceleration based assessment of gait parameters in older persons: a comparison of reliability and validity of four inverted pendulum based estimations. Gait Posture 38(4), 940–944 (2013)CrossRef Zijlstra, A., Zijlstra, W.: Trunk-acceleration based assessment of gait parameters in older persons: a comparison of reliability and validity of four inverted pendulum based estimations. Gait Posture 38(4), 940–944 (2013)CrossRef
4.
Zurück zum Zitat Godfrey, A., Lord, S., Galna, B., Mathers, J.C., Burn, D.J., Rochester, L.: The association between retirement and age on physical activity in older adults. Age Ageing 43, 386–393 (2014)CrossRef Godfrey, A., Lord, S., Galna, B., Mathers, J.C., Burn, D.J., Rochester, L.: The association between retirement and age on physical activity in older adults. Age Ageing 43, 386–393 (2014)CrossRef
5.
Zurück zum Zitat Del Din, S., Godfrey, A., Galna, B., Lord, S., Rochester, L.: Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length. J. NeuroEng. Rehabil. 13, 46 (2016)CrossRef Del Din, S., Godfrey, A., Galna, B., Lord, S., Rochester, L.: Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length. J. NeuroEng. Rehabil. 13, 46 (2016)CrossRef
7.
Zurück zum Zitat Rai, A., Chintalapudi, K.K., Padmanabhan, V.N., Sen R.: Zee: zero-effort crowdsourcing for indoor localization. In: MobiCom (2012) Rai, A., Chintalapudi, K.K., Padmanabhan, V.N., Sen R.: Zee: zero-effort crowdsourcing for indoor localization. In: MobiCom (2012)
8.
Zurück zum Zitat Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16, 115 (2016)CrossRef Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16, 115 (2016)CrossRef
9.
Zurück zum Zitat Weiss, G.M., Lockhart J.W.: The impact of personalization on smartphone-based activity recognition. In: Proceedings of the AAAI-12 Workshop on Activity Context Representation: Techniques and Languages, Toronto, Canada (2012) Weiss, G.M., Lockhart J.W.: The impact of personalization on smartphone-based activity recognition. In: Proceedings of the AAAI-12 Workshop on Activity Context Representation: Techniques and Languages, Toronto, Canada (2012)
10.
Zurück zum Zitat Stisen, A., et al.: Smart devices are different: assessing and mitigating mobile sensing heterogeneities for activity recognition. In: 13th ACM Conference on Embedded Networked Sensor Systems, Seoul, Korea (2015) Stisen, A., et al.: Smart devices are different: assessing and mitigating mobile sensing heterogeneities for activity recognition. In: 13th ACM Conference on Embedded Networked Sensor Systems, Seoul, Korea (2015)
11.
Zurück zum Zitat Zijlstra, A., Mancini, M., Lindermann, U., Chiari, L., Zijlstra, W.: Sit-stand and stand-sit transitions in older adults and patients with Parkinson’s disease: event detection based on motion sensors versus force plates. J. NeuroEng. Rehabil. 9, 75 (2012)CrossRef Zijlstra, A., Mancini, M., Lindermann, U., Chiari, L., Zijlstra, W.: Sit-stand and stand-sit transitions in older adults and patients with Parkinson’s disease: event detection based on motion sensors versus force plates. J. NeuroEng. Rehabil. 9, 75 (2012)CrossRef
12.
Zurück zum Zitat El-Gohary, M., et al.: Continuous monitoring of turning in patients with movement disability. Sensors 14, 356–369 (2014)CrossRef El-Gohary, M., et al.: Continuous monitoring of turning in patients with movement disability. Sensors 14, 356–369 (2014)CrossRef
13.
Zurück zum Zitat Mancini, M., et al.: Continuous monitoring of turning in Parkinson’s disease: rehabilitation potential. NeuroRehabilitation 37(1), 3–10 (2015)CrossRef Mancini, M., et al.: Continuous monitoring of turning in Parkinson’s disease: rehabilitation potential. NeuroRehabilitation 37(1), 3–10 (2015)CrossRef
14.
Zurück zum Zitat Lee, H.H., Choi, S., Lee, M.J.: Step detection robust against the dynamics of smartphones. Sensors 15(10), 27230–27250 (2015)CrossRef Lee, H.H., Choi, S., Lee, M.J.: Step detection robust against the dynamics of smartphones. Sensors 15(10), 27230–27250 (2015)CrossRef
15.
Zurück zum Zitat Pham, M.H.: Algorithm for turning detection and analysis validated under home-like conditions in patients with Parkinson’s disease and older adults using a 6 degree-of-freedom inertial measurement unit at the lower back. Front. Neurol. 8, 135 (2017) Pham, M.H.: Algorithm for turning detection and analysis validated under home-like conditions in patients with Parkinson’s disease and older adults using a 6 degree-of-freedom inertial measurement unit at the lower back. Front. Neurol. 8, 135 (2017)
16.
Zurück zum Zitat Stack, E., Ashburn, A.: Dyscuntional turning in Parkinson’s disease. Disabil. Rehabil. 30(16), 1222–1229 (2008)CrossRef Stack, E., Ashburn, A.: Dyscuntional turning in Parkinson’s disease. Disabil. Rehabil. 30(16), 1222–1229 (2008)CrossRef
Metadaten
Titel
Large-Scale Continuous Mobility Monitoring of Parkinson’s Disease Patients Using Smartphones
verfasst von
Wei-Yi Cheng
Florian Lipsmeier
Andrew Creigh
Alf Scotland
Timothy Kilchenmann
Liping Jin
Jens Schjodt-Eriksen
Detlef Wolf
Yan-Ping Zhang-Schaerer
Ignacio Fernandez Garcia
Juliane Siebourg-Polster
Jay Soto
Lynne Verselis
Meret Martin Facklam
Frank Boess
Martin Koller
Machael Grundman
Andreas U. Monsch
Ron Postuma
Anirvan Ghosh
Thomas Kremer
Kirsten I. Taylor
Christian Czech
Christian Gossens
Michael Lindemann
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-98551-0_2

Premium Partner