Skip to main content
Erschienen in:

24.10.2015 | Original Article

Large-scale image recognition based on parallel kernel supervised and semi-supervised subspace learning

verfasst von: Fei Wu, Xiao-Yuan Jing, Qian Liu, Song-Song Wu, Guo-Liang He

Erschienen in: Neural Computing and Applications | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Kernel discriminant subspace learning technique is effective to exploit the structure of image dataset in the high-dimensional nonlinear space. However, for large-scale image recognition applications, this technique usually suffers from large computational burden. Although some kernel accelerating methods have been presented, how to greatly reduce computing time and simultaneously keep favorable recognition accuracy is still challenging. In this paper, we introduce the idea of parallel computing into kernel subspace learning and build a parallel kernel discriminant subspace learning framework. In this framework, we firstly design a random non-overlapping equal data division strategy to divide the whole training set into several subsets and assign each computational node a subset. Then, we separately learn kernel discriminant subspaces from these subsets without mutual communications and finally select the most appropriate subspace to classify test samples. Under the built framework, we propose two novel kernel subspace learning approaches, i.e., parallel kernel discriminant analysis (PKDA) and parallel kernel semi-supervised discriminant analysis (PKSDA). We show the superiority of the proposed approaches in terms of time complexity as compared with related methods, and provide the fundamental supports for our framework. For experiment, we establish a parallel computing environment and employ three public large-scale image databases as experiment data. Experimental results demonstrate the efficiency and effectiveness of the proposed approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Belhumeur PN, Hespanda J, Kiregeman D (1997) Eigenfaces versus fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef Belhumeur PN, Hespanda J, Kiregeman D (1997) Eigenfaces versus fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef
3.
Zurück zum Zitat Pang SN, Ban T, Kadobayashi Y, Kasabov NK (2012) LDA merging and splitting with applications to multiagent cooperative learning and system alteration. IEEE Trans Syst Man Cybern Part B 42(2):552–564CrossRef Pang SN, Ban T, Kadobayashi Y, Kasabov NK (2012) LDA merging and splitting with applications to multiagent cooperative learning and system alteration. IEEE Trans Syst Man Cybern Part B 42(2):552–564CrossRef
4.
Zurück zum Zitat Ye JP (2007) Least squares linear discriminant analysis. In: International conference on machine learning, pp 1087–1093 Ye JP (2007) Least squares linear discriminant analysis. In: International conference on machine learning, pp 1087–1093
5.
Zurück zum Zitat Su Y, Shan SG, Chen XL, Gao W (2008) Classifiability-based optimal discriminatory projection pursuit. In: IEEE conference on computer vision and pattern recognition, pp 1–7 Su Y, Shan SG, Chen XL, Gao W (2008) Classifiability-based optimal discriminatory projection pursuit. In: IEEE conference on computer vision and pattern recognition, pp 1–7
6.
Zurück zum Zitat Zhang TH, Huang KQ, Li XL, Yang J, Tao DC (2010) Discriminative orthogonal neighborhood-preserving projections for classification. IEEE Trans Syst Man Cybern Part B 40(1):253–263CrossRef Zhang TH, Huang KQ, Li XL, Yang J, Tao DC (2010) Discriminative orthogonal neighborhood-preserving projections for classification. IEEE Trans Syst Man Cybern Part B 40(1):253–263CrossRef
7.
Zurück zum Zitat Li X, Hu WM, Wang HZ, Zhang ZF (2010) Linear discriminant analysis using rotational invariant L1 norm. Neurocomputing 73(13–15):2571–2579CrossRef Li X, Hu WM, Wang HZ, Zhang ZF (2010) Linear discriminant analysis using rotational invariant L1 norm. Neurocomputing 73(13–15):2571–2579CrossRef
8.
Zurück zum Zitat Zhao C, Miao D, Lai Z, Gao C, Liu C, Yang J (2013) Two-dimensional color uncorrelated discriminant analysis for face recognition. Neurocomputing 113:251–261CrossRef Zhao C, Miao D, Lai Z, Gao C, Liu C, Yang J (2013) Two-dimensional color uncorrelated discriminant analysis for face recognition. Neurocomputing 113:251–261CrossRef
9.
Zurück zum Zitat Zhong FJ, Zhang JS (2013) Linear discriminant analysis based on L1-norm maximization. IEEE Trans Image Process 22(8):3018–3027MathSciNetCrossRef Zhong FJ, Zhang JS (2013) Linear discriminant analysis based on L1-norm maximization. IEEE Trans Image Process 22(8):3018–3027MathSciNetCrossRef
10.
Zurück zum Zitat Yang M, Sun S (2014) Multi-view uncorrelated linear discriminant analysis with applications to handwritten digit recognition. In: International joint conference on neural networks, pp 4175–4181 Yang M, Sun S (2014) Multi-view uncorrelated linear discriminant analysis with applications to handwritten digit recognition. In: International joint conference on neural networks, pp 4175–4181
11.
Zurück zum Zitat Zhao C, Lai Z, Miao D, Wei Z, Liu C (2014) Graph embedding discriminant analysis for face recognition. Neural Comput Appl 24(7–8):1697–1706CrossRef Zhao C, Lai Z, Miao D, Wei Z, Liu C (2014) Graph embedding discriminant analysis for face recognition. Neural Comput Appl 24(7–8):1697–1706CrossRef
12.
Zurück zum Zitat Wang Z, Ruan Q, An G (2015) Projection-optimal local fisher discriminant analysis for feature extraction. Neural Comput Appl 26(3):589–601CrossRef Wang Z, Ruan Q, An G (2015) Projection-optimal local fisher discriminant analysis for feature extraction. Neural Comput Appl 26(3):589–601CrossRef
13.
14.
Zurück zum Zitat Li S, Fu Y (2014) Robust subspace discovery through supervised low-rank constraints. SIAM international conference on data mining, pp 163–171 Li S, Fu Y (2014) Robust subspace discovery through supervised low-rank constraints. SIAM international conference on data mining, pp 163–171
15.
Zurück zum Zitat Li S, Fu Y (2015) Learning robust and discriminative subspace with low-rank constraints. IEEE Trans Neural Netw Learn Syst (in press) Li S, Fu Y (2015) Learning robust and discriminative subspace with low-rank constraints. IEEE Trans Neural Netw Learn Syst (in press)
16.
Zurück zum Zitat Zhang DQ, Zhou ZH, Chen SC (2007) Semi-supervised dimensionality reduction. In: International conference on data mining, pp 629–634 Zhang DQ, Zhou ZH, Chen SC (2007) Semi-supervised dimensionality reduction. In: International conference on data mining, pp 629–634
17.
Zurück zum Zitat Cai D, He XF, Han JW (2007) Semi-supervised discriminant analysis. In: International conference on computer vision, pp 1–7 Cai D, He XF, Han JW (2007) Semi-supervised discriminant analysis. In: International conference on computer vision, pp 1–7
18.
Zurück zum Zitat Fan MY, Gu NN, Qiao H, Zhang B (2011) Sparse regularization for semi-supervised classification. Pattern Recognit 44(8):1777–1784CrossRefMATH Fan MY, Gu NN, Qiao H, Zhang B (2011) Sparse regularization for semi-supervised classification. Pattern Recognit 44(8):1777–1784CrossRefMATH
19.
Zurück zum Zitat Zhang TT, Ji RR, Liu W, Tao DC, Hua G (2013) Semi-supervised learning with manifold fitted graphs. In: International joint conference artificial intelligence, pp 1896–1902 Zhang TT, Ji RR, Liu W, Tao DC, Hua G (2013) Semi-supervised learning with manifold fitted graphs. In: International joint conference artificial intelligence, pp 1896–1902
20.
Zurück zum Zitat Tu W, Sun S (2013) Semi-supervised feature extraction for EEG classification. Pattern Anal Appl 16(2):213–222MathSciNetCrossRef Tu W, Sun S (2013) Semi-supervised feature extraction for EEG classification. Pattern Anal Appl 16(2):213–222MathSciNetCrossRef
21.
Zurück zum Zitat Zhao M, Zhang Z, Chow TW, Li B (2014) A general soft label based linear discriminant analysis for semi-supervised dimensionality reduction. Neural Netw 55:83–97CrossRefMATH Zhao M, Zhang Z, Chow TW, Li B (2014) A general soft label based linear discriminant analysis for semi-supervised dimensionality reduction. Neural Netw 55:83–97CrossRefMATH
22.
Zurück zum Zitat Gao Q, Huang Y, Gao X, Shen W, Zhang H (2015) A novel semi-supervised learning for face recognition. Neurocomputing 152:69–76CrossRef Gao Q, Huang Y, Gao X, Shen W, Zhang H (2015) A novel semi-supervised learning for face recognition. Neurocomputing 152:69–76CrossRef
23.
Zurück zum Zitat Kim M (2015) Greedy approaches to semi-supervised subspace learning. Pattern Recognit 48(4):1559–1566CrossRef Kim M (2015) Greedy approaches to semi-supervised subspace learning. Pattern Recognit 48(4):1559–1566CrossRef
24.
Zurück zum Zitat Taylor JS, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, CambridgeCrossRef Taylor JS, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, CambridgeCrossRef
25.
Zurück zum Zitat Mika S, Ratsch G, Weston J, Scholkopf B, Muller K (1999) Fisher discriminant analysis with kernels. In: IEEE signal processing society workshop on neural networks for signal processing IX, pp 41–48 Mika S, Ratsch G, Weston J, Scholkopf B, Muller K (1999) Fisher discriminant analysis with kernels. In: IEEE signal processing society workshop on neural networks for signal processing IX, pp 41–48
26.
Zurück zum Zitat Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404CrossRef Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404CrossRef
27.
Zurück zum Zitat Jing XY, Yao YF, Zhang D, Yang JY, Li M (2007) Face and palmprint pixel level fusion and KDCV–RBF classifier for small sample biometric recognition. Pattern Recognit 40(11):3209–3224CrossRefMATH Jing XY, Yao YF, Zhang D, Yang JY, Li M (2007) Face and palmprint pixel level fusion and KDCV–RBF classifier for small sample biometric recognition. Pattern Recognit 40(11):3209–3224CrossRefMATH
28.
Zurück zum Zitat Chen B, Yuan L, Liu H, Bao Z (2007) Kernel subclass discriminant analysis. Neurocomputing 71(1–3):455–458CrossRef Chen B, Yuan L, Liu H, Bao Z (2007) Kernel subclass discriminant analysis. Neurocomputing 71(1–3):455–458CrossRef
29.
Zurück zum Zitat Zheng WM, Lin ZC, Tang XO (2010) A rank-one update algorithm for fast solving kernel Foley–Sammon optimal discriminant vectors. IEEE Trans Neural Netw 21(3):393–403CrossRef Zheng WM, Lin ZC, Tang XO (2010) A rank-one update algorithm for fast solving kernel Foley–Sammon optimal discriminant vectors. IEEE Trans Neural Netw 21(3):393–403CrossRef
30.
Zurück zum Zitat Li JB, Peng Y, Liu D (2013) Quasiconformal kernel common locality discriminant analysis with application to breast cancer diagnosis. Inf Sci 223:256–269MathSciNetCrossRefMATH Li JB, Peng Y, Liu D (2013) Quasiconformal kernel common locality discriminant analysis with application to breast cancer diagnosis. Inf Sci 223:256–269MathSciNetCrossRefMATH
31.
Zurück zum Zitat Zheng W, Lin Z, Wang H (2014) L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction. IEEE Trans Neural Netw Learn Syst 25(4):793–805CrossRef Zheng W, Lin Z, Wang H (2014) L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction. IEEE Trans Neural Netw Learn Syst 25(4):793–805CrossRef
32.
Zurück zum Zitat Iosifidis A, Tefas A, Pitas I (2014) Kernel reference discriminant analysis. Pattern Recognit Lett 49:85–91CrossRef Iosifidis A, Tefas A, Pitas I (2014) Kernel reference discriminant analysis. Pattern Recognit Lett 49:85–91CrossRef
34.
Zurück zum Zitat Hu EL, Chen SC, Zhang DQ, Yin XS (2010) Semisupervised kernel matrix learning by kernel propagation. IEEE Trans Neural Netw 21(11):1831–1841CrossRef Hu EL, Chen SC, Zhang DQ, Yin XS (2010) Semisupervised kernel matrix learning by kernel propagation. IEEE Trans Neural Netw 21(11):1831–1841CrossRef
35.
Zurück zum Zitat Zhang Y, Yeung DY (2011) Semisupervised generalized discriminant analysis. IEEE Trans Neural Netw 22(8):1207–1217CrossRef Zhang Y, Yeung DY (2011) Semisupervised generalized discriminant analysis. IEEE Trans Neural Netw 22(8):1207–1217CrossRef
36.
Zurück zum Zitat Zhao M, Li B, Wu Z, Zhan C (2015) Image classification via least square semi-supervised discriminant analysis with flexible kernel regression for out-of-sample extension. Neurocomputing 153:96–107CrossRef Zhao M, Li B, Wu Z, Zhan C (2015) Image classification via least square semi-supervised discriminant analysis with flexible kernel regression for out-of-sample extension. Neurocomputing 153:96–107CrossRef
37.
Zurück zum Zitat Faußer S, Schwenker F (2014) Semi-supervised clustering of large data sets with kernel methods. Pattern Recognit Lett 37:78–84CrossRef Faußer S, Schwenker F (2014) Semi-supervised clustering of large data sets with kernel methods. Pattern Recognit Lett 37:78–84CrossRef
38.
Zurück zum Zitat Xiao JX, Hays J, Ehinger KA, Oliva A, Torralba A (2010) SUN database: large-scale scene recognition from abbey to zoo. In: IEEE conference on computer vision and pattern recognition, pp 3485–3492 Xiao JX, Hays J, Ehinger KA, Oliva A, Torralba A (2010) SUN database: large-scale scene recognition from abbey to zoo. In: IEEE conference on computer vision and pattern recognition, pp 3485–3492
39.
Zurück zum Zitat Tipping ME (2000) Sparse kernel principal component analysis. Adv Neural Inf Process Syst 13:633–639 Tipping ME (2000) Sparse kernel principal component analysis. Adv Neural Inf Process Syst 13:633–639
40.
Zurück zum Zitat Jiang XH, Snapp RR, Motai YC, Zhu XQ (2006) Accelerated kernel feature analysis. In: IEEE conference on computer vision and pattern recognition, pp 109–116 Jiang XH, Snapp RR, Motai YC, Zhu XQ (2006) Accelerated kernel feature analysis. In: IEEE conference on computer vision and pattern recognition, pp 109–116
41.
Zurück zum Zitat Franc V, Hlavac V (2006) Greedy kernel principal component analysis. Lect Notes Comput Sci 3948:87–105CrossRef Franc V, Hlavac V (2006) Greedy kernel principal component analysis. Lect Notes Comput Sci 3948:87–105CrossRef
42.
Zurück zum Zitat Xu Y, Zhang D, Jin Z, Li M, Yang JY (2006) A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recognit 39(6):1026–1033CrossRefMATH Xu Y, Zhang D, Jin Z, Li M, Yang JY (2006) A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recognit 39(6):1026–1033CrossRefMATH
43.
Zurück zum Zitat Zeng WJ, Li XL, Zhang XD, Cheng E (2010) Kernel-based nonlinear discriminant analysis using minimum squared errors criterion for multiclass and undersampled problems. Signal Process 90(8):2333–2343CrossRefMATH Zeng WJ, Li XL, Zhang XD, Cheng E (2010) Kernel-based nonlinear discriminant analysis using minimum squared errors criterion for multiclass and undersampled problems. Signal Process 90(8):2333–2343CrossRefMATH
44.
Zurück zum Zitat Cai D, He XF, Han JW (2011) Speed up kernel discriminant analysis. Int J Very Large Data Bases 20(1):21–33CrossRef Cai D, He XF, Han JW (2011) Speed up kernel discriminant analysis. Int J Very Large Data Bases 20(1):21–33CrossRef
45.
Zurück zum Zitat Wang HX, Hu ZL, Zhao YE (2007) An efficient algorithm for generalized discriminant analysis using incomplete Cholesky decomposition. Pattern Recognit Lett 28(2):254–259CrossRef Wang HX, Hu ZL, Zhao YE (2007) An efficient algorithm for generalized discriminant analysis using incomplete Cholesky decomposition. Pattern Recognit Lett 28(2):254–259CrossRef
46.
Zurück zum Zitat Li M, Bi W, Kwok JT, Lu BL (2015) Large-scale Nyström kernel matrix approximation using randomized SVD. IEEE Trans Neural Netw Learn Syst 26(1):152–164MathSciNetCrossRef Li M, Bi W, Kwok JT, Lu BL (2015) Large-scale Nyström kernel matrix approximation using randomized SVD. IEEE Trans Neural Netw Learn Syst 26(1):152–164MathSciNetCrossRef
47.
Zurück zum Zitat Sun P, Yao X (2010) Sparse approximation through boosting for learning large scale kernel machines. IEEE Trans Neural Netw 21(6):883–894CrossRef Sun P, Yao X (2010) Sparse approximation through boosting for learning large scale kernel machines. IEEE Trans Neural Netw 21(6):883–894CrossRef
48.
Zurück zum Zitat Rahimi A, Recht B (2009) Random features for large-scale kernel machines. Adv Neural Inf Process Syst: 1–10 Rahimi A, Recht B (2009) Random features for large-scale kernel machines. Adv Neural Inf Process Syst: 1–10
49.
Zurück zum Zitat Zhou ZH, Chindaro S, Deravi F (2009) A classification framework for large-scale face recognition systems. Lect Notes Comput Sci 5558:337–346CrossRef Zhou ZH, Chindaro S, Deravi F (2009) A classification framework for large-scale face recognition systems. Lect Notes Comput Sci 5558:337–346CrossRef
50.
Zurück zum Zitat Vedaldi A, Zisserman A (2012) Sparse kernel approximations for efficient classification and detection. In: IEEE conference on computer vision and pattern recognition, pp 2320–2327 Vedaldi A, Zisserman A (2012) Sparse kernel approximations for efficient classification and detection. In: IEEE conference on computer vision and pattern recognition, pp 2320–2327
51.
Zurück zum Zitat Macua SV, Belanovic P, Zazo S (2011) Distributed linear discriminant analysis. In: International conference on acoustics, speech and signal processing, pp 3288–3291 Macua SV, Belanovic P, Zazo S (2011) Distributed linear discriminant analysis. In: International conference on acoustics, speech and signal processing, pp 3288–3291
52.
Zurück zum Zitat Jing XY, Li S, Zhang D, Yang J, Yang JY (2012) Supervised and unsupervised parallel subspace learning for large-scale image recognition. IEEE Trans Circuits Syst Video Technol 22(10):1497–1511CrossRef Jing XY, Li S, Zhang D, Yang J, Yang JY (2012) Supervised and unsupervised parallel subspace learning for large-scale image recognition. IEEE Trans Circuits Syst Video Technol 22(10):1497–1511CrossRef
53.
Zurück zum Zitat Fu JS, Yang WL (2011) Distributed kernel Fisher discriminant analysis for radar image recognition. In: International conference on mechanic automation and control engineering, pp 1241–1244 Fu JS, Yang WL (2011) Distributed kernel Fisher discriminant analysis for radar image recognition. In: International conference on mechanic automation and control engineering, pp 1241–1244
54.
Zurück zum Zitat Ma ZY, Leijion A (2009) Bata mixture models and the application to image classification. In: International conference on image processing, pp 2045–2048 Ma ZY, Leijion A (2009) Bata mixture models and the application to image classification. In: International conference on image processing, pp 2045–2048
55.
Zurück zum Zitat Mizukami Y, Tadamura K, Warrell J, Li P, Prince S (2010) CUDA implementation of deformable pattern recognition and its application to MNIST handwritten digit database. In: International conference on pattern recognition, pp 2001–2004 Mizukami Y, Tadamura K, Warrell J, Li P, Prince S (2010) CUDA implementation of deformable pattern recognition and its application to MNIST handwritten digit database. In: International conference on pattern recognition, pp 2001–2004
56.
Zurück zum Zitat Lee KC, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698CrossRef Lee KC, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698CrossRef
57.
Zurück zum Zitat Chawla NV, Karakoulas GI (2005) Learning from labeled and unlabeled data: an empirical study across techniques and domains. J Artif Intell Res 23:331–366MATH Chawla NV, Karakoulas GI (2005) Learning from labeled and unlabeled data: an empirical study across techniques and domains. J Artif Intell Res 23:331–366MATH
58.
Zurück zum Zitat Turk MA, Pentland AP (1991) Face recognition using Eigenfaces. IEEE Conference on computer vision and pattern recognition, pp 586–591 Turk MA, Pentland AP (1991) Face recognition using Eigenfaces. IEEE Conference on computer vision and pattern recognition, pp 586–591
59.
Zurück zum Zitat Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239CrossRef Kittler J, Hatef M, Duin RPW, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239CrossRef
Metadaten
Titel
Large-scale image recognition based on parallel kernel supervised and semi-supervised subspace learning
verfasst von
Fei Wu
Xiao-Yuan Jing
Qian Liu
Song-Song Wu
Guo-Liang He
Publikationsdatum
24.10.2015
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 3/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-2081-y

Weitere Artikel der Ausgabe 3/2017

Neural Computing and Applications 3/2017 Zur Ausgabe

Premium Partner