Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

27.12.2018 | Regular Paper Open Access

Large-scale predictive modeling and analytics through regression queries in data management systems

Zeitschrift:
International Journal of Data Science and Analytics
Autoren:
Christos Anagnostopoulos, Peter Triantafillou
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Regression analytics has been the standard approach to modeling the relationship between input and output variables, while recent trends aim to incorporate advanced regression analytics capabilities within data management systems (DMS). Linear regression queries are fundamental to exploratory analytics and predictive modeling. However, computing their exact answers leaves a lot to be desired in terms of efficiency and scalability. We contribute with a novel predictive analytics model and an associated statistical learning methodology, which are efficient, scalable and accurate in discovering piecewise linear dependencies among variables by observing only regression queries and their answers issued to a DMS. We focus on in-DMS piecewise linear regression and specifically in predicting the answers to mean-value aggregate queries, identifying and delivering the piecewise linear dependencies between variables to regression queries and predicting the data dependent variables within specific data subspaces defined by analysts and data scientists. Our goal is to discover a piecewise linear data function approximation over the underlying data only through query–answer pairs that is competitive with the best piecewise linear approximation to the ground truth. Our methodology is analyzed, evaluated and compared with exact solution and near-perfect approximations of the underlying relationships among variables achieving orders of magnitude improvement in analytics processing.

Unsere Produktempfehlungen

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise