Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Large Scale Utilization of Carbon Dioxide: From Its Reaction with Energy Rich Chemicals to (Co)-processing with Water to Afford Energy Rich Products. Opportunities and Barriers

verfasst von : Michele Aresta, Francesco Nocito

Erschienen in: An Economy Based on Carbon Dioxide and Water

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter makes the analysis of the possible routes for large scale CO2 utilization (CCU). Processes that convert CO2 into chemicals, materials and fuels are discussed, as they are part of the strategy for reducing the CO2 emission into the atmosphere. Technical uses of CO2, which do not imply its chemical conversion, are discussed in Chap. 3, while mineralization and carbonation reactions for the production of inorganic materials are treated in Chap. 4. Here, the catalytic synthesis of organic products with a market close to, or higher than, 1 Mt/year is discussed, presenting the state of the art and barriers to full exploitation. Minor applications are summarized, without a detailed analysis as their contribution to CO2 reduction is low, even if they can favour the development of a sustainable chemical industry with reduction of the environmental impact. Energy products (C1 and Cn molecules) are discussed for some peculiar aspects in this chapter, as their catalytic production will be extensively presented in following chapters where the potential of using CO2 and water as source of fuels is analysed for its many possible applications setting actual limits and future perspectives. A comparison of Carbon Capture and Storage-CCS and CCU is made, highlighting the pros and cons of each technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley-WCH Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley-WCH
3.
Zurück zum Zitat Aresta M, Quaranta E, Tommasi I, Giannoccaro P, Ciccarese A (1995) Enzymatic versus chemical carbon dioxide utilization. Part I. The role of metal centres in carboxylation reactions. Gazz Chim Ital 125(11):509–538 Aresta M, Quaranta E, Tommasi I, Giannoccaro P, Ciccarese A (1995) Enzymatic versus chemical carbon dioxide utilization. Part I. The role of metal centres in carboxylation reactions. Gazz Chim Ital 125(11):509–538
4.
Zurück zum Zitat (a) Baran T, Wojtyla S, Dibenedetto A, Aresta M, Macyk W (2015) Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2. Appl Catal B Env 178:170–176. (b) Aresta M, Dibenedetto A, Baran T, Wojtyla S, Macyk W (2015) Solar energy utilization in the direct photocarboxylation of 2,3-dihydrofuran using CO2. Faraday Discuss 183:413–427. (c) Dibenedetto A, Zhang J, Trochowski M, Angelini A, Macyk W, Aresta M (2017) Photocatalytic carboxylation of CH bonds promoted by popped graphene oxide (PGO) either bare or loaded with CuO. J CO2 Utilz 20:97–104 (a) Baran T, Wojtyla S, Dibenedetto A, Aresta M, Macyk W (2015) Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2. Appl Catal B Env 178:170–176. (b) Aresta M, Dibenedetto A, Baran T, Wojtyla S, Macyk W (2015) Solar energy utilization in the direct photocarboxylation of 2,3-dihydrofuran using CO2. Faraday Discuss 183:413–427. (c) Dibenedetto A, Zhang J, Trochowski M, Angelini A, Macyk W, Aresta M (2017) Photocatalytic carboxylation of CH bonds promoted by popped graphene oxide (PGO) either bare or loaded with CuO. J CO2 Utilz 20:97–104
5.
Zurück zum Zitat Liang Y-F, Steinbock R, Yang L, Ackermann L (2018) Continuous visible light-photo-flow approach for manganese-catalyzed (het)arene C–H arylation. Angew Chem Int 57:10625–10629 Liang Y-F, Steinbock R, Yang L, Ackermann L (2018) Continuous visible light-photo-flow approach for manganese-catalyzed (het)arene C–H arylation. Angew Chem Int 57:10625–10629
8.
Zurück zum Zitat Abas N, Kalair A, Khan H (2015) Review of fossil fuels and future energy technologies. Futures 69:31–49 Abas N, Kalair A, Khan H (2015) Review of fossil fuels and future energy technologies. Futures 69:31–49
10.
Zurück zum Zitat (a) Goto Y, Wang Q (2018) A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule. Accepted https://doi.org/10.1016/j.joule.2017.12.009. (b) Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Env Sci 6(7):1983–2002 (a) Goto Y, Wang Q (2018) A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule. Accepted https://​doi.​org/​10.​1016/​j.​joule.​2017.​12.​009. (b) Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Env Sci 6(7):1983–2002
12.
Zurück zum Zitat (a) Aresta M, Galatola M (2001) Life cycle analysis applied to the assessment of the environmental impact of alternative synthetic processes. J Cleaner Prod 7:181–193. (b) Aresta M, Caroppo A, Dibenedetto A, Narracci M (2002) Life cycle assessment (LCA) applied to the synthesis of methanol. Comparison of the use of syngas with the use of CO2 and dihydrogen produced from renewables. In: Maroto-Valer M (ed) Envrironmental challenges and greenhouse gas control for fossil fuel utilization in the 21st century. Kluwer Academic, Plenum Publishers, New York. (c) Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118(2):434–504 (a) Aresta M, Galatola M (2001) Life cycle analysis applied to the assessment of the environmental impact of alternative synthetic processes. J Cleaner Prod 7:181–193. (b) Aresta M, Caroppo A, Dibenedetto A, Narracci M (2002) Life cycle assessment (LCA) applied to the synthesis of methanol. Comparison of the use of syngas with the use of CO2 and dihydrogen produced from renewables. In: Maroto-Valer M (ed) Envrironmental challenges and greenhouse gas control for fossil fuel utilization in the 21st century. Kluwer Academic, Plenum Publishers, New York. (c) Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118(2):434–504
13.
Zurück zum Zitat Aresta M, Quaranta E (1997) Carbon dioxide: a substitute for phosgene. Chem Tech 27(3):32–40 Aresta M, Quaranta E (1997) Carbon dioxide: a substitute for phosgene. Chem Tech 27(3):32–40
15.
Zurück zum Zitat Rupesh S, Muraleedharan C, Arun P (2016) Exergy and energy analyses of Syngas production from different biomasses through air-steaming gasification. Front Energy, pp 1–13 Rupesh S, Muraleedharan C, Arun P (2016) Exergy and energy analyses of Syngas production from different biomasses through air-steaming gasification. Front Energy, pp 1–13
17.
Zurück zum Zitat Aresta M, Dibenedetto A, LN He (2012) Analysis of demand for captured CO2 and products from CO2 conversion. A report exclusively for members of the carbon dioxide capture and conversion CO2–CC programme of the catalyst group resources (TCGR) Aresta M, Dibenedetto A, LN He (2012) Analysis of demand for captured CO2 and products from CO2 conversion. A report exclusively for members of the carbon dioxide capture and conversion CO2–CC programme of the catalyst group resources (TCGR)
18.
Zurück zum Zitat (a) Aresta M, Dibenedetto A, Quaranta E (2016) Reaction mechanisms in carbon dioxide conversion. Springer. (b) Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) New nickel-carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel. J Chem Soc Chem Comm 15:636–637 (a) Aresta M, Dibenedetto A, Quaranta E (2016) Reaction mechanisms in carbon dioxide conversion. Springer. (b) Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) New nickel-carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel. J Chem Soc Chem Comm 15:636–637
19.
Zurück zum Zitat Aresta M, Nocito F, Dibenedetto A (2018) What catalysis can do for boosting carbon dioxide utilization. Adv Catal 62:49–110 Aresta M, Nocito F, Dibenedetto A (2018) What catalysis can do for boosting carbon dioxide utilization. Adv Catal 62:49–110
21.
Zurück zum Zitat Tanaka R, Yamashita M, Nozaki K (2009) Catalytic hydrogenation of carbon dioxide using Ir(III)–Pincer complexes. J Am Chem Soc 131(40):14168–14169PubMed Tanaka R, Yamashita M, Nozaki K (2009) Catalytic hydrogenation of carbon dioxide using Ir(III)–Pincer complexes. J Am Chem Soc 131(40):14168–14169PubMed
22.
Zurück zum Zitat Wesselbaum S, Hintermaier U, Leitner W (2012) Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base. Angew Chem Int Ed 51:8585–8588 Wesselbaum S, Hintermaier U, Leitner W (2012) Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base. Angew Chem Int Ed 51:8585–8588
23.
Zurück zum Zitat Moret S, Dyson P, Laurenczy G (2014) Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat Commun 5:1–7 Moret S, Dyson P, Laurenczy G (2014) Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat Commun 5:1–7
26.
Zurück zum Zitat Alvarez R, Carmona E, Galindo A, Gutierrez E, Marin JM, Monge A, Poveda ML, Ruiz C, Savariault JM (1989) Formation of carboxylate complexes from the reactions of CO2 with ethylene complexes of molybdenum and tungsten. X-ray and neutron diffraction studies. Organomet 8(10):2430–2439 Alvarez R, Carmona E, Galindo A, Gutierrez E, Marin JM, Monge A, Poveda ML, Ruiz C, Savariault JM (1989) Formation of carboxylate complexes from the reactions of CO2 with ethylene complexes of molybdenum and tungsten. X-ray and neutron diffraction studies. Organomet 8(10):2430–2439
27.
Zurück zum Zitat Aresta M, Pastore C, Giannoccaro P, Kovacs G, Dibenedetto A, Papai I (2007) Evidence for spontaneous release of acrylates from a transition-metal complex upon coupling ethene or propene with a carboxylic moiety or CO2. Chem Eur J 13(32):9028–9034PubMed Aresta M, Pastore C, Giannoccaro P, Kovacs G, Dibenedetto A, Papai I (2007) Evidence for spontaneous release of acrylates from a transition-metal complex upon coupling ethene or propene with a carboxylic moiety or CO2. Chem Eur J 13(32):9028–9034PubMed
28.
Zurück zum Zitat Lejkowski ML, Lindner R, Kageyama T, Bodizs GE, Plessow PN, Mueller IM, Schaefer A, Rominger F, Hofmann P, Futter C, Schunck SA, Limbach M (2012) The first catalytic synthesis of an acrylate from CO2 and an alkene—a rational approach. Chem Eur J 18(44):14017–14025PubMed Lejkowski ML, Lindner R, Kageyama T, Bodizs GE, Plessow PN, Mueller IM, Schaefer A, Rominger F, Hofmann P, Futter C, Schunck SA, Limbach M (2012) The first catalytic synthesis of an acrylate from CO2 and an alkene—a rational approach. Chem Eur J 18(44):14017–14025PubMed
29.
Zurück zum Zitat (a) Wang X, Wang H, Sun Y (2017) Synthesis of acrylic acid derivatives from CO2 and ethylene. Chem 3:211–228. (b) Li Y, Liu Z, Cheng R, Liu B (2018) Mechanistic aspects of acrylic acid formation from CO2–ethylene coupling over palladium- and Nickel-based catalysts. ChemCatChem 10(6):1420–1430 (a) Wang X, Wang H, Sun Y (2017) Synthesis of acrylic acid derivatives from CO2 and ethylene. Chem 3:211–228. (b) Li Y, Liu Z, Cheng R, Liu B (2018) Mechanistic aspects of acrylic acid formation from CO2–ethylene coupling over palladium- and Nickel-based catalysts. ChemCatChem 10(6):1420–1430
30.
Zurück zum Zitat See for example Chapter 6 in Aresta M, Dibenedetto A, Quaranta E (2016) Reaction mechanisms for carbon dioxide conversion. Springer See for example Chapter 6 in Aresta M, Dibenedetto A, Quaranta E (2016) Reaction mechanisms for carbon dioxide conversion. Springer
31.
Zurück zum Zitat Aresta M, Dibenedetto A, Dutta A (2017) Energy issues in the utilization of CO2 in the synthesis of chemicals: the case of the direct carboxylation of alcohols to dialkyl-carbonates. Cat Today 281:345–351 Aresta M, Dibenedetto A, Dutta A (2017) Energy issues in the utilization of CO2 in the synthesis of chemicals: the case of the direct carboxylation of alcohols to dialkyl-carbonates. Cat Today 281:345–351
32.
Zurück zum Zitat Aresta M, Dibenedetto A, Angelini A, Papai I (2015) Reaction mechanisms in the direct carboxylation of alcohols for the synthesis of acyclic carbonates. Top Catal 58(1):2–14 Aresta M, Dibenedetto A, Angelini A, Papai I (2015) Reaction mechanisms in the direct carboxylation of alcohols for the synthesis of acyclic carbonates. Top Catal 58(1):2–14
33.
Zurück zum Zitat Dibenedetto A, Aresta M, Angelini A, Etiraj J, Aresta BM (2012) Synthesis characterization and use of NbV/CeIV-mixed oxides in the direct carboxylation of ethanol by using pervaporation membranes for water removal. Chem A Eur J 18(33):10524–10534 Dibenedetto A, Aresta M, Angelini A, Etiraj J, Aresta BM (2012) Synthesis characterization and use of NbV/CeIV-mixed oxides in the direct carboxylation of ethanol by using pervaporation membranes for water removal. Chem A Eur J 18(33):10524–10534
35.
Zurück zum Zitat Aresta M, Dibenedetto A, Nocito F, Pastore C (2006) A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Cat 257(1–2):149–153 Aresta M, Dibenedetto A, Nocito F, Pastore C (2006) A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Cat 257(1–2):149–153
36.
Zurück zum Zitat (a) Aresta M, Quaranta E, Ciccarese A, (1987) Direct synthesis of 1,3-benzodioxol-2-one from styrene, dioxygen and carbon dioxide promoted by Rh(I). J Mol Cat 41:355–359. (b) Dibenedetto A, Aresta M, Distaso M, Pastore C, Venezia AM, Liu C-J, Zhang M (2008) High throughput experiment approach to the oxidation of propene to propene oxide with transition metal oxides as O-donors. Catal Today 137:44–51 (a) Aresta M, Quaranta E, Ciccarese A, (1987) Direct synthesis of 1,3-benzodioxol-2-one from styrene, dioxygen and carbon dioxide promoted by Rh(I). J Mol Cat 41:355–359. (b) Dibenedetto A, Aresta M, Distaso M, Pastore C, Venezia AM, Liu C-J, Zhang M (2008) High throughput experiment approach to the oxidation of propene to propene oxide with transition metal oxides as O-donors. Catal Today 137:44–51
37.
Zurück zum Zitat Angelini A, Dibenedetto A, Curulla-Ferre D, Aresta M (2015) Synthesis of diethylcarbonate by ethanolysis of urea catalysed by heterogeneous mixed oxides. RSC Adv 5(107):88401–88408 Angelini A, Dibenedetto A, Curulla-Ferre D, Aresta M (2015) Synthesis of diethylcarbonate by ethanolysis of urea catalysed by heterogeneous mixed oxides. RSC Adv 5(107):88401–88408
38.
Zurück zum Zitat Wang M, Wang H, Zhao N, Sun Y (2007) High-yield synthesis of dimethyl carbonate from urea and methanol using a catalytic distillation process. Ind Eng Chem Res 46(9):2683–2687 Wang M, Wang H, Zhao N, Sun Y (2007) High-yield synthesis of dimethyl carbonate from urea and methanol using a catalytic distillation process. Ind Eng Chem Res 46(9):2683–2687
39.
Zurück zum Zitat Aresta M, Ballivet-Tkatchenko D, Belli-Dell’Amico D, Bonnet MC, Boschi D, Calderazzo F, Faure R, Labella L, Marchetti F (2000) Isolation and structural determination of two derivatives of the elusive carbamic acid. RSC Chem Commun 13:1099–1100 Aresta M, Ballivet-Tkatchenko D, Belli-Dell’Amico D, Bonnet MC, Boschi D, Calderazzo F, Faure R, Labella L, Marchetti F (2000) Isolation and structural determination of two derivatives of the elusive carbamic acid. RSC Chem Commun 13:1099–1100
40.
Zurück zum Zitat Aresta M, Dibenedetto A, Quaranta E (1998) Reaction of aromatic diamines with diphenylcarbonate catalyzed by phosphorous acids: a new clean synthetic route to mono- and dicarbamates. Tetrahedron 54(46):14145–14156 Aresta M, Dibenedetto A, Quaranta E (1998) Reaction of aromatic diamines with diphenylcarbonate catalyzed by phosphorous acids: a new clean synthetic route to mono- and dicarbamates. Tetrahedron 54(46):14145–14156
41.
Zurück zum Zitat Aresta M, Bosetti A, Quaranta E (1996) Procedimento per la produzione di carbammati aromatici. Ital Pat, Appl, p 002202 Aresta M, Bosetti A, Quaranta E (1996) Procedimento per la produzione di carbammati aromatici. Ital Pat, Appl, p 002202
42.
Zurück zum Zitat Aresta M, Dibenedetto A, Quaranta E (1999) Selective carbomethoxylation of aromatic diamines: with mixed carbonic acid diesters in the presence of phosphorous acids. Green Chem 1(5):237–242 Aresta M, Dibenedetto A, Quaranta E (1999) Selective carbomethoxylation of aromatic diamines: with mixed carbonic acid diesters in the presence of phosphorous acids. Green Chem 1(5):237–242
43.
Zurück zum Zitat (a) Aresta M, Dibenedetto A (2002) Mixed anhydrides: key intermediates in carbamates forming processes of industrial interest. Chem A Eur J 8(3):685–690. (b) Aresta M, Dibenedetto A (2002) Development of environmentally friendly synthese: use of enzymes and biomimetic systems for the direct carboxylation of organic substrates. Rev Mol Biotechnol 90:113–128 (a) Aresta M, Dibenedetto A (2002) Mixed anhydrides: key intermediates in carbamates forming processes of industrial interest. Chem A Eur J 8(3):685–690. (b) Aresta M, Dibenedetto A (2002) Development of environmentally friendly synthese: use of enzymes and biomimetic systems for the direct carboxylation of organic substrates. Rev Mol Biotechnol 90:113–128
49.
Zurück zum Zitat Inui T, Phatanasri S, Matsuda H (1990) Highly selective synthesis of ethene from methanol on a novel nickel-silicoaluminophosphate catalyst. JCS Chem Comm 3:205–206 Inui T, Phatanasri S, Matsuda H (1990) Highly selective synthesis of ethene from methanol on a novel nickel-silicoaluminophosphate catalyst. JCS Chem Comm 3:205–206
50.
Zurück zum Zitat Peng Y, Wu T, Sun L, Nsanzimana JMV, Fisher AC, Wang X (2017) Selective electrochemical reduction of CO2 to ethylene on nanopores-modified copper electrodes in aqueous solution. ACS Appl Mater Interfaces 9(38):32782–32789PubMed Peng Y, Wu T, Sun L, Nsanzimana JMV, Fisher AC, Wang X (2017) Selective electrochemical reduction of CO2 to ethylene on nanopores-modified copper electrodes in aqueous solution. ACS Appl Mater Interfaces 9(38):32782–32789PubMed
51.
Zurück zum Zitat Tamura J, Ono A, Sugano Y, Huang C, Nishizawa H, Mikoshiba S (2015) Electrochemical reduction of CO2 to ethylene glycol on imidazolium ion-terminated self-assembly monolayer-modified Au electrodes in an aqueous solution. Phys Chem Chem Phys 17(39):26072–26078 Tamura J, Ono A, Sugano Y, Huang C, Nishizawa H, Mikoshiba S (2015) Electrochemical reduction of CO2 to ethylene glycol on imidazolium ion-terminated self-assembly monolayer-modified Au electrodes in an aqueous solution. Phys Chem Chem Phys 17(39):26072–26078
53.
Zurück zum Zitat Aresta M, Dibenedetto A (2019) Beyond fractionation in microalgae utilization. In: Pires J, Goncalves AL (eds) Bioenergy with carbon capture and storage. Elsevier, ISBN 9780128162293 Aresta M, Dibenedetto A (2019) Beyond fractionation in microalgae utilization. In: Pires J, Goncalves AL (eds) Bioenergy with carbon capture and storage. Elsevier, ISBN 9780128162293
54.
Zurück zum Zitat Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716PubMed Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716PubMed
55.
Zurück zum Zitat Sugnaux M, Happe M, Cachelin CP, Gasperini A, Blatter M, Fischer F (2017) Cathode deposits favor methane generation in microbial electrolysis cell. Chem Eng J 324:228–236 Sugnaux M, Happe M, Cachelin CP, Gasperini A, Blatter M, Fischer F (2017) Cathode deposits favor methane generation in microbial electrolysis cell. Chem Eng J 324:228–236
56.
Zurück zum Zitat (a) Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc B 84(571):260–276. (b) Santoro C, Arbizzani C, Erable B, Ieropoulos IJ (2017) Microbial fuel cells: from fundamentals to applications. A review. Power Sources 356:225–244 (a) Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc B 84(571):260–276. (b) Santoro C, Arbizzani C, Erable B, Ieropoulos IJ (2017) Microbial fuel cells: from fundamentals to applications. A review. Power Sources 356:225–244
57.
58.
Zurück zum Zitat Xafenias N, Mapelli V (2014) Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. Int J Hydrogen Energy 39(36):21864–21875 Xafenias N, Mapelli V (2014) Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. Int J Hydrogen Energy 39(36):21864–21875
59.
Zurück zum Zitat El Mekawy A, Hegab HM, Mohanakrishna G, Bulut M, Pant D (2016) Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization. Biores Technol 215:357–370 El Mekawy A, Hegab HM, Mohanakrishna G, Bulut M, Pant D (2016) Technological advances in CO2 conversion electro-biorefinery: a step toward commercialization. Biores Technol 215:357–370
60.
Zurück zum Zitat de Bok FAM, Hagedoorn PL, Silva PJ, Hagen WR, Schiltz E, Fritsche K, Stams AJM (2003) Two W-containing formate dehydrogenase (CO2 reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. Eur J Biochem 270:2476–2485PubMed de Bok FAM, Hagedoorn PL, Silva PJ, Hagen WR, Schiltz E, Fritsche K, Stams AJM (2003) Two W-containing formate dehydrogenase (CO2 reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. Eur J Biochem 270:2476–2485PubMed
61.
Zurück zum Zitat Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA 105(31):10654–10658PubMed Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA 105(31):10654–10658PubMed
62.
Zurück zum Zitat Aresta M, Dibenedetto A, Baran T, Angelini A, Labuz P, Macyk W (2014) An integrated photocatalytic/enzymatic system for the reduction of CO2 to methanol in bioglycerol–water. Beilst J Org Chem 10:2556–2565 Aresta M, Dibenedetto A, Baran T, Angelini A, Labuz P, Macyk W (2014) An integrated photocatalytic/enzymatic system for the reduction of CO2 to methanol in bioglycerol–water. Beilst J Org Chem 10:2556–2565
63.
Zurück zum Zitat Schlager S, Dibenedetto A, Aresta M, Apaydin DH, Dumitru LM, Neugebauer H, Sariciftci NS (2017) Biocatalytic and bioelectrocatalytic approaches for the reduction of carbon dioxide using enzymes. Energy Technol 5(6):812–821 Schlager S, Dibenedetto A, Aresta M, Apaydin DH, Dumitru LM, Neugebauer H, Sariciftci NS (2017) Biocatalytic and bioelectrocatalytic approaches for the reduction of carbon dioxide using enzymes. Energy Technol 5(6):812–821
64.
Zurück zum Zitat Aresta M, Dibenedetto A, Macyk W (2015) Hybrid (enzymatic and photocatalytic) systems for CO2—water coprocessing to afford energy-rich molecules. In: Rozhkova E, Katsuhiko A (eds) From molecules to materials, pathways to artificial photosynthesis. Springer, pp 149–169 Aresta M, Dibenedetto A, Macyk W (2015) Hybrid (enzymatic and photocatalytic) systems for CO2—water coprocessing to afford energy-rich molecules. In: Rozhkova E, Katsuhiko A (eds) From molecules to materials, pathways to artificial photosynthesis. Springer, pp 149–169
65.
Zurück zum Zitat Angelini A, Aresta M, Dibenedetto A, Baran T, Macyk W (2015) IP 0001419035, fotocatalizzatori per la riduzione nel visibile di NAD+ a NADH in un processo ibrido chemi-enzimatico di riduzione di CO2 a metanolo Angelini A, Aresta M, Dibenedetto A, Baran T, Macyk W (2015) IP 0001419035, fotocatalizzatori per la riduzione nel visibile di NAD+ a NADH in un processo ibrido chemi-enzimatico di riduzione di CO2 a metanolo
66.
Zurück zum Zitat Aresta M, Dibenedetto A, Quaranta E (2016) State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology. J Catal 343:2–45 Aresta M, Dibenedetto A, Quaranta E (2016) State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology. J Catal 343:2–45
67.
Zurück zum Zitat Marxer D, Furler P, Tacacs M, Steinfeld A (2017) Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ Sci 10(5):1142–1149 Marxer D, Furler P, Tacacs M, Steinfeld A (2017) Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ Sci 10(5):1142–1149
68.
Zurück zum Zitat (a) Bork A H, Kubicek M, Struzik M, Rupp J LM (2015) Perovskite La0.6Sr0.4Cr1−xCoxO3−δ solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature. J Mater Chem 3(30):15546–15557. (b) Rao CNR, Dey S (2015) Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides. J Solid State Chem 242(2):107–115 (a) Bork A H, Kubicek M, Struzik M, Rupp J LM (2015) Perovskite La0.6Sr0.4Cr1−xCoxO3−δ solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature. J Mater Chem 3(30):15546–15557. (b) Rao CNR, Dey S (2015) Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides. J Solid State Chem 242(2):107–115
69.
Zurück zum Zitat Mostrou S, Buchel R, Pratsinis SE, van Bokhoven JA (2017) Improving the ceria-mediated water and carbon dioxide splitting through the addition of chromium. Appl Catal A Gen 537:40–49 Mostrou S, Buchel R, Pratsinis SE, van Bokhoven JA (2017) Improving the ceria-mediated water and carbon dioxide splitting through the addition of chromium. Appl Catal A Gen 537:40–49
70.
Zurück zum Zitat Amatore C, Savéant JM (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J Am Chem Soc 103(17):5021–5023 Amatore C, Savéant JM (1981) Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J Am Chem Soc 103(17):5021–5023
71.
Zurück zum Zitat Hawecker J, Lehn JM, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3 X or Ru(bipy) 3 2+ –Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 9:536–538 Hawecker J, Lehn JM, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3 X or Ru(bipy) 3 2+ –Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 9:536–538
72.
Zurück zum Zitat (a) Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39(11–12):1833–1839. (b) Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Vayenas (ed) Modern aspects of electrochemistry, vol 42, 3rd edn., pp 89–189 (a) Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39(11–12):1833–1839. (b) Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Vayenas (ed) Modern aspects of electrochemistry, vol 42, 3rd edn., pp 89–189
73.
Zurück zum Zitat Li Q, Fu J, Zhu W, Chen Z, Shen B, Wu L, Xi Z, Wang T, Lu G, Zhu JJ, Sun S (2017) Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Amer Chem Soc 139(12):4290–4293 Li Q, Fu J, Zhu W, Chen Z, Shen B, Wu L, Xi Z, Wang T, Lu G, Zhu JJ, Sun S (2017) Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Amer Chem Soc 139(12):4290–4293
74.
Zurück zum Zitat Schreier M, Héroguel F, Steier L, Ahmad S, Luterbacher JS, Mayer MT, Luo J, Graetzel M (2017) Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat Energy 2(7):17087–17096 Schreier M, Héroguel F, Steier L, Ahmad S, Luterbacher JS, Mayer MT, Luo J, Graetzel M (2017) Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat Energy 2(7):17087–17096
75.
Zurück zum Zitat Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z (2017) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5(1):1700275–1700279 Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z (2017) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5(1):1700275–1700279
77.
Zurück zum Zitat Olah GA (2013) Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52(1):104–107 Olah GA (2013) Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52(1):104–107
78.
Zurück zum Zitat Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5(3):1922–1938 Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5(3):1922–1938
79.
Zurück zum Zitat (a) Raudaskoski R, Turpeinen E, Lenkkeri R, Pongrácz E, Keiski RL (2009) Catalytic activation of CO2: use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts. Catal Today 144(3–4):318-323. (b) Yang C, Ma Z, Zhao N, Wei W, Hu T, Sun Y (2006) Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst. Catal Today 115(1–4):222–227 (a) Raudaskoski R, Turpeinen E, Lenkkeri R, Pongrácz E, Keiski RL (2009) Catalytic activation of CO2: use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts. Catal Today 144(3–4):318-323. (b) Yang C, Ma Z, Zhao N, Wei W, Hu T, Sun Y (2006) Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst. Catal Today 115(1–4):222–227
81.
Zurück zum Zitat Ma J, Sun NN, Zhang XL, Zhao N, Mao FK, Wei W, Sun YH (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221–223 Ma J, Sun NN, Zhang XL, Zhao N, Mao FK, Wei W, Sun YH (2009) A short review of catalysis for CO2 conversion. Catal Today 148:221–223
83.
Zurück zum Zitat Frusteri F, Cordaro M, Cannilla C, Bonura G (2015) Multifunctionality of Cu–ZnO–ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction. Appl Catal B: Env 162:57–65 Frusteri F, Cordaro M, Cannilla C, Bonura G (2015) Multifunctionality of Cu–ZnO–ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction. Appl Catal B: Env 162:57–65
84.
Zurück zum Zitat Sabatier P, Senderens JB (1902) New synthesis of methane. J Chem Soc 82:333 Sabatier P, Senderens JB (1902) New synthesis of methane. J Chem Soc 82:333
85.
Zurück zum Zitat Jürgensen L, Ehimen EA, Born J, Holm-Nielsen JB (2015) Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation. Bioresour Technol 178:323–329PubMed Jürgensen L, Ehimen EA, Born J, Holm-Nielsen JB (2015) Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation. Bioresour Technol 178:323–329PubMed
86.
Zurück zum Zitat (a) Stangeland K, Kalai D, Li H, Yu Z (2017) CO2 methanation: the effect of catalysts and reaction conditions. Energy Proc 105:2022–2027. (b) Brooks KP, Hu J, Zhu H, Kee RJ (2007) Methanation of carbon dioxide by hydrogen reduction using the sabatier process in microchannel reactors. Chem Eng Sci 62:1161–1170. (c) Kirchner J, Katharina J, Henry A, Kureti LS (2018) Methanation of CO2 on iron based catalysts. Appl Catal B: Env 223:47-59. (d) Visconti, CG (2010) Reactor for exothermic or endothermic catalytic reaction WO2010/130399 & Visconti, CG (2014) Multi-structured reactor made of monolithic adjacent thermoconductive bodies for chemical processes with a high heat exchange WO2014/102350 (a) Stangeland K, Kalai D, Li H, Yu Z (2017) CO2 methanation: the effect of catalysts and reaction conditions. Energy Proc 105:2022–2027. (b) Brooks KP, Hu J, Zhu H, Kee RJ (2007) Methanation of carbon dioxide by hydrogen reduction using the sabatier process in microchannel reactors. Chem Eng Sci 62:1161–1170. (c) Kirchner J, Katharina J, Henry A, Kureti LS (2018) Methanation of CO2 on iron based catalysts. Appl Catal B: Env 223:47-59. (d) Visconti, CG (2010) Reactor for exothermic or endothermic catalytic reaction WO2010/130399 & Visconti, CG (2014) Multi-structured reactor made of monolithic adjacent thermoconductive bodies for chemical processes with a high heat exchange WO2014/102350
87.
Zurück zum Zitat Mattia D, Jones M D, O’Byrne J P, Griffiths OG, Owen RE, Sackville E, McManus M, Plucinski P (2015) Towards Carbon-Neutral CO2 Conversion to Hydrocarbons ChemSusChem 8(23):4064–4072 Mattia D, Jones M D, O’Byrne J P, Griffiths OG, Owen RE, Sackville E, McManus M, Plucinski P (2015) Towards Carbon-Neutral CO2 Conversion to Hydrocarbons ChemSusChem 8(23):4064–4072
88.
Zurück zum Zitat Gao P, Li S, Bu X, Sun Y (2017) Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat Chem 9(10):1019–1024PubMed Gao P, Li S, Bu X, Sun Y (2017) Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat Chem 9(10):1019–1024PubMed
89.
Zurück zum Zitat (a) Satthawong R, Koizumi N, Song C, Prasassarakich P (2013) Bimetallic Fe–Co catalysts for CO2 hydrogenation to higher hydrocarbons. JCOU 3–4:102–106. (b) Visconti CG, Martinelli M, Falbo L, Infantes-Molina A, Lietti L, Forzatti P, Iaquaniello G, Palo E, Picutti B, Brignoli F (2017) CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst. Appl Catal B 200:530–542 (a) Satthawong R, Koizumi N, Song C, Prasassarakich P (2013) Bimetallic Fe–Co catalysts for CO2 hydrogenation to higher hydrocarbons. JCOU 3–4:102–106. (b) Visconti CG, Martinelli M, Falbo L, Infantes-Molina A, Lietti L, Forzatti P, Iaquaniello G, Palo E, Picutti B, Brignoli F (2017) CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst. Appl Catal B 200:530–542
90.
Zurück zum Zitat Emam EA (2015) Gas Flaring in industry: an overview. Pet Coal 57(5):532–555 Emam EA (2015) Gas Flaring in industry: an overview. Pet Coal 57(5):532–555
91.
Zurück zum Zitat Aresta M, Dibenedetto A, Quaranta E (2016) Reaction mechanisms in carbon dioxide conversion. Springer (Chapter 5) Aresta M, Dibenedetto A, Quaranta E (2016) Reaction mechanisms in carbon dioxide conversion. Springer (Chapter 5)
92.
Zurück zum Zitat (a) Pitter S, Dinjus E (1997) Phosphinoalkyl nitriles as hemilabile ligands: new aspects in the homogeneous catalytic coupling of CO2 and 1,3-butadiene. J Mol Catal A Chem 125:39–45. (b) Behr A, Henze H (2011) Use of carbon dioxide in chemical syntheses via a lactone intermediate. Green Chem 13:25–39 (a) Pitter S, Dinjus E (1997) Phosphinoalkyl nitriles as hemilabile ligands: new aspects in the homogeneous catalytic coupling of CO2 and 1,3-butadiene. J Mol Catal A Chem 125:39–45. (b) Behr A, Henze H (2011) Use of carbon dioxide in chemical syntheses via a lactone intermediate. Green Chem 13:25–39
93.
Zurück zum Zitat (a) Doring A, Jolly PM (1980) The palladium catalysed reaction of carbon dioxide with allene, Tetrahedron Lett, 21:3021–3024. (b) Aresta M, Ciccarese A, Quaranta E (1985) Head to head and head to tail coupling of allene and co-condensation with carbon dioxide promoted by 1,2-bis(diphenylphosphimo)ethane(η6-tetraphenylborate) rhodium. C1 Mol Chem 1:283-295. (c) North M (2011) Synthesis of b,g-unsaturated acids from allenes and carbon dioxide. Angew Chem Int Ed 48:4104–4105. (d) Aresta M, Dibenedetto A, Papai I, Schubert G (2002) Unprecedented formal [2 + 2] addition of allene to CO2 promoted by [RhCl(C2H4)(PiPr3)]2: direct synthesis of four membered lactone α-methylene-β-oxiethanone. The intermediacy of [RhH2Cl (PiPr3)]2: theoretical aspects and experiments. Inorg Chim Acta 334:294–300 (a) Doring A, Jolly PM (1980) The palladium catalysed reaction of carbon dioxide with allene, Tetrahedron Lett, 21:3021–3024. (b) Aresta M, Ciccarese A, Quaranta E (1985) Head to head and head to tail coupling of allene and co-condensation with carbon dioxide promoted by 1,2-bis(diphenylphosphimo)ethane(η6-tetraphenylborate) rhodium. C1 Mol Chem 1:283-295. (c) North M (2011) Synthesis of b,g-unsaturated acids from allenes and carbon dioxide. Angew Chem Int Ed 48:4104–4105. (d) Aresta M, Dibenedetto A, Papai I, Schubert G (2002) Unprecedented formal [2 + 2] addition of allene to CO2 promoted by [RhCl(C2H4)(PiPr3)]2: direct synthesis of four membered lactone α-methylene-β-oxiethanone. The intermediacy of [RhH2Cl (PiPr3)]2: theoretical aspects and experiments. Inorg Chim Acta 334:294–300
94.
Zurück zum Zitat (a) Hoberg H, Schaefer D, Buchart G (1982) Oxalanickelacyclopenten-drivate, ein neur typ vielseitig verwendbarer synthone. J Organomet Chem 228:C21–C24. (b) Albano P, Aresta M (1980) Some catalytic properties of Rh(diphos)(h6-BPh4). J Organomet Chem 190:243–246 (a) Hoberg H, Schaefer D, Buchart G (1982) Oxalanickelacyclopenten-drivate, ein neur typ vielseitig verwendbarer synthone. J Organomet Chem 228:C21–C24. (b) Albano P, Aresta M (1980) Some catalytic properties of Rh(diphos)(h6-BPh4). J Organomet Chem 190:243–246
Metadaten
Titel
Large Scale Utilization of Carbon Dioxide: From Its Reaction with Energy Rich Chemicals to (Co)-processing with Water to Afford Energy Rich Products. Opportunities and Barriers
verfasst von
Michele Aresta
Francesco Nocito
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-15868-2_1