Skip to main content

2015 | OriginalPaper | Buchkapitel

2. Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms

verfasst von : Prof. Dr. Dongdong Gu

Erschienen in: Laser Additive Manufacturing of High-Performance Materials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laser sintering (LS), laser melting (LM), and laser metal deposition (LMD) are presently regarded as the three most versatile laser-based additive manufacturing (AM) processes. Laser-based AM processes generally have a complex nonequilibrium physical and chemical metallurgical nature, which is material- and process-dependant. The influence of material characteristics and processing conditions on the metallurgical mechanisms and resultant microstructural and mechanical properties of AM-processed components needs to be clarified. This chapter starts with the definition of LS/LM/LMD processes and operative consolidation mechanisms for metallic components. Powder materials used for AM, in the categories of pure metal powder, prealloyed powder, multi-component metals, alloys, metal matrix composites (MMCs) powder, and associated densification mechanisms during AM are addressed. An in-depth review of material and process aspects of AM, including the physical aspects of materials for AM and the microstructural and mechanical properties of AM-processed components, is presented. The purpose of this chapter is to establish a general relationship among material, process, and metallurgical mechanism for laser-based AM of metallic components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhu HH, Lu L, Fuh JYH (2003) Development and characterisation of direct laser sintering Cu-based metal powder. J Mater Process Technol 140:314–317 Zhu HH, Lu L, Fuh JYH (2003) Development and characterisation of direct laser sintering Cu-based metal powder. J Mater Process Technol 140:314–317
2.
Zurück zum Zitat Mumtaz K, Hopkinson N (2009) Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyping J 15(2):96–103 Mumtaz K, Hopkinson N (2009) Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyping J 15(2):96–103
3.
Zurück zum Zitat Mazumder J, Dutta D, Kikuchi N, Kikuchi N (2000) Closed loop direct metal deposition: art to part. Opt Laser Eng 34(4–6):397–414 Mazumder J, Dutta D, Kikuchi N, Kikuchi N (2000) Closed loop direct metal deposition: art to part. Opt Laser Eng 34(4–6):397–414
4.
Zurück zum Zitat Griffith ML, Keicher DM, Atwood CL et al (1996) Free form fabrication of metallic components using laser engineered net shaping (LENSTM). Proceeding 7th Symp. on solid freeform fabrication, The University of Texas at Austin, Austin, TX, USA Griffith ML, Keicher DM, Atwood CL et al (1996) Free form fabrication of metallic components using laser engineered net shaping (LENSTM). Proceeding 7th Symp. on solid freeform fabrication, The University of Texas at Austin, Austin, TX, USA
5.
Zurück zum Zitat Milewski JO, Lewis GK, Thoma DJ et al (1998) Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. J Mater Process Technol 75(1–3):165–172 Milewski JO, Lewis GK, Thoma DJ et al (1998) Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. J Mater Process Technol 75(1–3):165–172
6.
Zurück zum Zitat Fischer P, Romano V, Blatter A et al (2005) Highly precise pulsed selective laser sintering of metallic powders. Laser Phys Lett 2(1):48–55 Fischer P, Romano V, Blatter A et al (2005) Highly precise pulsed selective laser sintering of metallic powders. Laser Phys Lett 2(1):48–55
7.
Zurück zum Zitat Schleifenbaum H, Meiners W, Wissenbach K et al (2010) Individualized production by means of high power selective laser melting. CIRP J Manuf Sci Technol 2(3):161–169 Schleifenbaum H, Meiners W, Wissenbach K et al (2010) Individualized production by means of high power selective laser melting. CIRP J Manuf Sci Technol 2(3):161–169
8.
Zurück zum Zitat Kaiser T, Albrecht GJ (2007) Industrial disk lasers for micro material processing—compact reliable systems conquer the market. Laser Techn J 4(3):54–57 Kaiser T, Albrecht GJ (2007) Industrial disk lasers for micro material processing—compact reliable systems conquer the market. Laser Techn J 4(3):54–57
9.
Zurück zum Zitat Agarwala M, Bourell D, Beaman J et al (1995) Direct selective laser sintering of metals. Rapid Prototyping J 1(1):26–36 Agarwala M, Bourell D, Beaman J et al (1995) Direct selective laser sintering of metals. Rapid Prototyping J 1(1):26–36
10.
Zurück zum Zitat Das S, Beaman JJ, Wohlert M, et al (1998) Direct laser freeform fabrication of high performance metal components. Rapid Prototyping J 4(3):112–117 Das S, Beaman JJ, Wohlert M, et al (1998) Direct laser freeform fabrication of high performance metal components. Rapid Prototyping J 4(3):112–117
11.
Zurück zum Zitat Simchi A, Petzoldt F, Pohl H (2001) Direct metal laser sintering: material considerations and mechanisms of particle bonding. Int J Powder Metall 37(2):49–61 Simchi A, Petzoldt F, Pohl H (2001) Direct metal laser sintering: material considerations and mechanisms of particle bonding. Int J Powder Metall 37(2):49–61
12.
Zurück zum Zitat Kruth JP, Levy G, Klocke F et al (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann—Manuf Technol 56(2):730–759 Kruth JP, Levy G, Klocke F et al (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann—Manuf Technol 56(2):730–759
13.
Zurück zum Zitat Simchi A, Pohl H (2003) Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater Sci Eng A 359(1/2):119–128 Simchi A, Pohl H (2003) Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater Sci Eng A 359(1/2):119–128
14.
Zurück zum Zitat Kruth JP, Froyen L, Rombouts M et al (2003) New ferro powder for selective laser sintering of dense parts. CIRP Ann—Manuf Technol 52(1):139–142 Kruth JP, Froyen L, Rombouts M et al (2003) New ferro powder for selective laser sintering of dense parts. CIRP Ann—Manuf Technol 52(1):139–142
15.
Zurück zum Zitat Zhu HH, Lu L, Fuh JYH (2004) Influence of binder’s liquid volume fraction on direct laser sintering of metallic powder. Mater Sci Eng A 371(1/2):170–177 Zhu HH, Lu L, Fuh JYH (2004) Influence of binder’s liquid volume fraction on direct laser sintering of metallic powder. Mater Sci Eng A 371(1/2):170–177
16.
Zurück zum Zitat Niu HJ, Chang HIT (1998) Liquid phase sintering of M3/2 high speed steel by selective laser sintering. Scr Mater 39(1):67–72 Niu HJ, Chang HIT (1998) Liquid phase sintering of M3/2 high speed steel by selective laser sintering. Scr Mater 39(1):67–72
17.
Zurück zum Zitat Agarwala M, Bourell D, Beaman J et al (1995) Post-processing of selective laser sintered metal parts. Rapid Prototyping J 1(2):36–44 Agarwala M, Bourell D, Beaman J et al (1995) Post-processing of selective laser sintered metal parts. Rapid Prototyping J 1(2):36–44
18.
Zurück zum Zitat Das S, Wohlert M, Beaman JJ et al (1999) Processing of titanium net shapes by SLS HIP. Mater Des 20(2–3):115–121 Das S, Wohlert M, Beaman JJ et al (1999) Processing of titanium net shapes by SLS HIP. Mater Des 20(2–3):115–121
19.
Zurück zum Zitat Kumar S, Kruth JP (2007) Effect of bronze infiltration into laser sintered metallic parts. Mater Des 28(2):400–407 Kumar S, Kruth JP (2007) Effect of bronze infiltration into laser sintered metallic parts. Mater Des 28(2):400–407
20.
Zurück zum Zitat Kruth JP, Mercelis P, Van Vaerenbergh J et al (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J 11(1):26–36 Kruth JP, Mercelis P, Van Vaerenbergh J et al (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J 11(1):26–36
21.
Zurück zum Zitat Liu JX, Ryneson ML (2006) Blended powder solid supersolidus liquid phase sintering. U.S. Patent 7070734 B 2 Liu JX, Ryneson ML (2006) Blended powder solid supersolidus liquid phase sintering. U.S. Patent 7070734 B 2
22.
Zurück zum Zitat Simchi A (2006) Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater Sci Eng A 428(1/2):148–158 Simchi A (2006) Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater Sci Eng A 428(1/2):148–158
23.
Zurück zum Zitat Niu HJ, Chang ITH (2000) Selective laser sintering of gas atomized M2 high speed steel powder. J Mater Sci 35(1):31–38 Niu HJ, Chang ITH (2000) Selective laser sintering of gas atomized M2 high speed steel powder. J Mater Sci 35(1):31–38
24.
Zurück zum Zitat Fukuda A, Takemoto M, Saito T, et al (2011) Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater 7(5):2327–2336 Fukuda A, Takemoto M, Saito T, et al (2011) Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater 7(5):2327–2336
25.
Zurück zum Zitat Buchbinder D, Wissenbach K (2008) Additive manufacturing of aluminum components with minimal distortion. Fraunhofer ILT annual report, Fraunhofer ILT, Aachen, Germany Buchbinder D, Wissenbach K (2008) Additive manufacturing of aluminum components with minimal distortion. Fraunhofer ILT annual report, Fraunhofer ILT, Aachen, Germany
26.
Zurück zum Zitat Becker D, Wissenbach K (2009) Additive manufacturing of copper components. Fraunhofer ILT annual report, Fraunhofer ILT, Aachen, Germany Becker D, Wissenbach K (2009) Additive manufacturing of copper components. Fraunhofer ILT annual report, Fraunhofer ILT, Aachen, Germany
27.
Zurück zum Zitat Tolochko NK, Arshinov MK, Gusarov AV et al (2003) Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyping J 9(5):314–326 Tolochko NK, Arshinov MK, Gusarov AV et al (2003) Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyping J 9(5):314–326
28.
Zurück zum Zitat Tolochko NK, Mozzharov SE, Yadroitsev IA et al (2004) Balling processes during selective laser treatment of powders. Rapid Prototyping J 10(2):78–87 Tolochko NK, Mozzharov SE, Yadroitsev IA et al (2004) Balling processes during selective laser treatment of powders. Rapid Prototyping J 10(2):78–87
29.
Zurück zum Zitat Shiomi M, Osakada K, Nakamura K et al (2004) Residual stress within metallic model made by selective laser melting process. CIRP Ann—Manuf Technol 53(1):195–198 Shiomi M, Osakada K, Nakamura K et al (2004) Residual stress within metallic model made by selective laser melting process. CIRP Ann—Manuf Technol 53(1):195–198
30.
Zurück zum Zitat Pogson S, Fox P, O’Neill W et al (2004) The direct metal laser remelting of copper and tool steel powders. Mater Sci Eng A 386(1/2):453–459 Pogson S, Fox P, O’Neill W et al (2004) The direct metal laser remelting of copper and tool steel powders. Mater Sci Eng A 386(1/2):453–459
31.
Zurück zum Zitat Mazumder J, Schifferer A, Choi J (1999) Direct materials deposition: designed macro and microstructure. Mater Res Innovat 3(3):118–131 Mazumder J, Schifferer A, Choi J (1999) Direct materials deposition: designed macro and microstructure. Mater Res Innovat 3(3):118–131
32.
Zurück zum Zitat Koch J, Mazumder J (2000) Apparatus and methods for monitoring and controlling multi-layer laser cladding, U.S. Patent 6122564 Koch J, Mazumder J (2000) Apparatus and methods for monitoring and controlling multi-layer laser cladding, U.S. Patent 6122564
33.
Zurück zum Zitat Mazumder J, Morgan D, Skszek TW et al (2010) Direct metal deposition apparatus utilizing rapid-response diode laser source, U.S. Patent 7765022 Mazumder J, Morgan D, Skszek TW et al (2010) Direct metal deposition apparatus utilizing rapid-response diode laser source, U.S. Patent 7765022
34.
Zurück zum Zitat Dutta B, Singh V, Natu H et al (2009) Direct metal deposition. Adv Mater Process 167(3):29–31 Dutta B, Singh V, Natu H et al (2009) Direct metal deposition. Adv Mater Process 167(3):29–31
35.
Zurück zum Zitat Dutta B, Palaniswamy S, Choi J et al (2011) Additive manufacturing by direct metal deposition. Adv Mater Process 169(5):33–36 Dutta B, Palaniswamy S, Choi J et al (2011) Additive manufacturing by direct metal deposition. Adv Mater Process 169(5):33–36
36.
Zurück zum Zitat Hammeke AW (1988) Laser spray nozzle and method, U.S. Patent 4724299 Hammeke AW (1988) Laser spray nozzle and method, U.S. Patent 4724299
37.
Zurück zum Zitat Mudge RP, Wald NR (2007) Laser engineered net shaping advances additive manufacturing and repair. Weld J 86(1):44–48 Mudge RP, Wald NR (2007) Laser engineered net shaping advances additive manufacturing and repair. Weld J 86(1):44–48
38.
Zurück zum Zitat Zhong M, Liu W (2010) Laser surface cladding: the state of the art and challenges. Proc Inst Mech Eng C 224 (C5): 1041–1060 Zhong M, Liu W (2010) Laser surface cladding: the state of the art and challenges. Proc Inst Mech Eng C 224 (C5): 1041–1060
40.
Zurück zum Zitat Mazumder J (2000) A crystal ball view of direct-metal deposition. JOM 52(12):28–29 Mazumder J (2000) A crystal ball view of direct-metal deposition. JOM 52(12):28–29
41.
Zurück zum Zitat Shin KH, Natu H, Dutta D et al (2003) A method for the design and fabrication of heterogeneous objects. Mater Des 24(5):339–353 Shin KH, Natu H, Dutta D et al (2003) A method for the design and fabrication of heterogeneous objects. Mater Des 24(5):339–353
42.
Zurück zum Zitat Schwendner KI, Banerjee R, Collins PC et al (2001) Direct laser deposition of alloys from elemental powder blends. Scr Mater 45(10):1123–1129 Schwendner KI, Banerjee R, Collins PC et al (2001) Direct laser deposition of alloys from elemental powder blends. Scr Mater 45(10):1123–1129
43.
Zurück zum Zitat Banerjee R, Collins PC, Bhattacharyya D et al (2003) Microstructural evolution in laser deposited compositionally graded a/b titanium-vanadium alloys. Acta Mater 51(11):3277–3292 Banerjee R, Collins PC, Bhattacharyya D et al (2003) Microstructural evolution in laser deposited compositionally graded a/b titanium-vanadium alloys. Acta Mater 51(11):3277–3292
44.
Zurück zum Zitat Liu WP, Dupont JN (2003) In-situ reactive processing of nickel aluminides by laser-engineered net shaping. Metall Mater Trans A 34(11):2633–2641 Liu WP, Dupont JN (2003) In-situ reactive processing of nickel aluminides by laser-engineered net shaping. Metall Mater Trans A 34(11):2633–2641
45.
Zurück zum Zitat Collins PC, Banerjee R, Banerjee S et al (2003) Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys. Mater Sci Eng A 352(1/2):118–128 Collins PC, Banerjee R, Banerjee S et al (2003) Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys. Mater Sci Eng A 352(1/2):118–128
46.
Zurück zum Zitat Mazumder J (2009) Direct metal deposition: process control, properties and applications. THERMEC’ 2009 Presentation, Berlin, Germany Mazumder J (2009) Direct metal deposition: process control, properties and applications. THERMEC’ 2009 Presentation, Berlin, Germany
47.
Zurück zum Zitat Wang L, Felicelli S, Gooroochurn Y et al (2008) Optimization of the LENS® process for steady molten pool size. Mater Sci Eng A 474(1/2):148–156 Wang L, Felicelli S, Gooroochurn Y et al (2008) Optimization of the LENS® process for steady molten pool size. Mater Sci Eng A 474(1/2):148–156
48.
Zurück zum Zitat Yu J, Lin X, Wang JJ et al (2010) Mechanics and energy analysis on molten pool spreading during laser solid forming. Appl Surf Sci 256(14):4612–4620 Yu J, Lin X, Wang JJ et al (2010) Mechanics and energy analysis on molten pool spreading during laser solid forming. Appl Surf Sci 256(14):4612–4620
50.
Zurück zum Zitat Zheng B, Zhou Y, Smugeresky JE et al (2008) Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: part I. Numerical calculations. Metall Mater Trans A 39(9):2228–2236 Zheng B, Zhou Y, Smugeresky JE et al (2008) Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: part I. Numerical calculations. Metall Mater Trans A 39(9):2228–2236
51.
Zurück zum Zitat Zheng B, Zhou Y, Smugeresky JE et al (2008) Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion. Metall Mater Trans A 39(9):2237–2245 Zheng B, Zhou Y, Smugeresky JE et al (2008) Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion. Metall Mater Trans A 39(9):2237–2245
52.
Zurück zum Zitat Xiong YH, Smugeresky JE, Schoenung JM (2009) The influence of working distance on laser deposited WC-Co. J Mater Process Technol 209(10):4935–4941 Xiong YH, Smugeresky JE, Schoenung JM (2009) The influence of working distance on laser deposited WC-Co. J Mater Process Technol 209(10):4935–4941
54.
Zurück zum Zitat Griffith ML, Schlienger ME, Harwell LD et al (1999) Understanding thermal behavior in the LENS process. Mater Des 20(2/3):107–133 Griffith ML, Schlienger ME, Harwell LD et al (1999) Understanding thermal behavior in the LENS process. Mater Des 20(2/3):107–133
55.
Zurück zum Zitat Pratt P, Felicelli SD, Wang L et al (2008) Residual stress measurement of laser-engineered net shaping AISI 410 thin plates using neutron diffraction. Metall Mater Trans A 39(13):3155–3163 Pratt P, Felicelli SD, Wang L et al (2008) Residual stress measurement of laser-engineered net shaping AISI 410 thin plates using neutron diffraction. Metall Mater Trans A 39(13):3155–3163
56.
Zurück zum Zitat Wang L, Felicelli SD, Pratt P (2008) Residual stresses in LENS-deposited AISI 410 stainless steel plates. Mater Sci Eng A 496(1/2):234–241 Wang L, Felicelli SD, Pratt P (2008) Residual stresses in LENS-deposited AISI 410 stainless steel plates. Mater Sci Eng A 496(1/2):234–241
57.
Zurück zum Zitat He X, Mazumder J (2007) Transport phenomena during direct metal deposition. J Appl Phys 101(5):053113 He X, Mazumder J (2007) Transport phenomena during direct metal deposition. J Appl Phys 101(5):053113
58.
Zurück zum Zitat He X, Yu G, Mazumder J (2010) Temperature and composition profile during double-track laser cladding of H13 tool steel. J Phys D: Appl Phys 43(1):015502 He X, Yu G, Mazumder J (2010) Temperature and composition profile during double-track laser cladding of H13 tool steel. J Phys D: Appl Phys 43(1):015502
59.
Zurück zum Zitat Fischer P, Leber H, Romano V et al (2004) Microstructure of near-infrared pulsed laser sintered titanium samples. Appl Phys A 78(8):1219–1227 Fischer P, Leber H, Romano V et al (2004) Microstructure of near-infrared pulsed laser sintered titanium samples. Appl Phys A 78(8):1219–1227
60.
Zurück zum Zitat Vandenbroucke B, Kruth JP (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J 13(4):196–203 Vandenbroucke B, Kruth JP (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J 13(4):196–203
61.
Zurück zum Zitat Krishna BV, Bose S, Bandyopadhyay A (2007) Low stiffness porous Ti structures for load-bearing implants. Acta Biomater 3(6):997–1006 Krishna BV, Bose S, Bandyopadhyay A (2007) Low stiffness porous Ti structures for load-bearing implants. Acta Biomater 3(6):997–1006
62.
Zurück zum Zitat Balla VK, Bodhak S, Bose S et al (2010) Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater 6(8):3349–3359 Balla VK, Bodhak S, Bose S et al (2010) Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater 6(8):3349–3359
63.
Zurück zum Zitat Santos EC, Osakada K, Shiomi M et al (2004) Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting. Proc Inst Mech Eng C 218(7):711–719 Santos EC, Osakada K, Shiomi M et al (2004) Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting. Proc Inst Mech Eng C 218(7):711–719
64.
Zurück zum Zitat Laoui T, Santos E, Osakada K et al (2006) Properties of titanium dental implant models made by laser processing. Proc Inst Mech Eng C 220(6):857–863 Laoui T, Santos E, Osakada K et al (2006) Properties of titanium dental implant models made by laser processing. Proc Inst Mech Eng C 220(6):857–863
65.
Zurück zum Zitat Pogson SR, Fox P, Sutcliffe CJ et al (2003) The production of copper parts using DMLR. Rapid Prototyping J 9(5):334–343 Pogson SR, Fox P, Sutcliffe CJ et al (2003) The production of copper parts using DMLR. Rapid Prototyping J 9(5):334–343
66.
Zurück zum Zitat Khan M, Dickens P (2010) Selective laser melting (SLM) of pure gold. Gold Bull 43(2):114–121 Khan M, Dickens P (2010) Selective laser melting (SLM) of pure gold. Gold Bull 43(2):114–121
67.
Zurück zum Zitat Dinda GP, Song L, Mazumder J (2008) Fabrication of Ti-6Al-4 V scaffolds by direct metal deposition. Metall Mater Trans A 39(12):2914–2922 Dinda GP, Song L, Mazumder J (2008) Fabrication of Ti-6Al-4 V scaffolds by direct metal deposition. Metall Mater Trans A 39(12):2914–2922
69.
Zurück zum Zitat Hollander DA, von Walter M, Wirtz T et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4 V produced by direct laser forming. Biomaterials 27(7):955–963 Hollander DA, von Walter M, Wirtz T et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4 V produced by direct laser forming. Biomaterials 27(7):955–963
70.
Zurück zum Zitat Wu X, Sharman R, Mei J et al (2004) Microstructure and properties of a laser fabricated burn-resistant Ti alloy. Mater Des 25(2):103–109 Wu X, Sharman R, Mei J et al (2004) Microstructure and properties of a laser fabricated burn-resistant Ti alloy. Mater Des 25(2):103–109
71.
Zurück zum Zitat Tian XJ, Zhang SQ, Li A et al (2010) Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti-4Al-1.5Mn. Mater Sci Eng A 527(7/8):1821–1827 Tian XJ, Zhang SQ, Li A et al (2010) Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti-4Al-1.5Mn. Mater Sci Eng A 527(7/8):1821–1827
72.
Zurück zum Zitat Yadroitsev I, Thivillon L, Bertrand Ph et al (2007) Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Appl Surf Sci 254(4):980–983 Yadroitsev I, Thivillon L, Bertrand Ph et al (2007) Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Appl Surf Sci 254(4):980–983
73.
Zurück zum Zitat Yadroitsev I, Pavlov M, Bertrand Ph et al (2009) Mechanical properties of samples fabricated by selective laser melting. Proceeding 14th Eur. Conf. on Rapid Prototyping and Manufacturing, Paris, France Yadroitsev I, Pavlov M, Bertrand Ph et al (2009) Mechanical properties of samples fabricated by selective laser melting. Proceeding 14th Eur. Conf. on Rapid Prototyping and Manufacturing, Paris, France
74.
Zurück zum Zitat Mumtaz KA, Erasenthiran P, Hopkinson N (2008) High density selective laser melting of Waspaloy®. J Mater Process Technol 195(1–3):77–87 Mumtaz KA, Erasenthiran P, Hopkinson N (2008) High density selective laser melting of Waspaloy®. J Mater Process Technol 195(1–3):77–87
75.
Zurück zum Zitat Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A 509(1/2):98–104 Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A 509(1/2):98–104
76.
Zurück zum Zitat Zhao XM, Chen J, Lin X et al (2008) Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater Sci Eng A 478(1/2):119–124 Zhao XM, Chen J, Lin X et al (2008) Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater Sci Eng A 478(1/2):119–124
77.
Zurück zum Zitat Zhao XM, Lin X, Chen J et al (2009) The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming. Mater Sci Eng A 504(1/2):129–134 Zhao XM, Lin X, Chen J et al (2009) The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming. Mater Sci Eng A 504(1/2):129–134
78.
Zurück zum Zitat Li J, Wang HM (2010) Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene’41 by laser melting deposition manufacturing. Mater Sci Eng A 527(18/19):4823–4829 Li J, Wang HM (2010) Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene’41 by laser melting deposition manufacturing. Mater Sci Eng A 527(18/19):4823–4829
79.
Zurück zum Zitat Morgan R, Sutcliffe CJ, O’Neill W (2004) Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives. J Mater Sci 39(4):1195–1205 Morgan R, Sutcliffe CJ, O’Neill W (2004) Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives. J Mater Sci 39(4):1195–1205
80.
Zurück zum Zitat Yadroitsev I, Bertrand Ph, Smurov I (2007) Parametric analysis of the selective laser melting process. Appl Surf Sci 253(19):8064–8069 Yadroitsev I, Bertrand Ph, Smurov I (2007) Parametric analysis of the selective laser melting process. Appl Surf Sci 253(19):8064–8069
81.
Zurück zum Zitat Xie JW, Fox P, O’Neill W et al (2005) Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels. J Mater Process Technol 170(3):516–523 Xie JW, Fox P, O’Neill W et al (2005) Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels. J Mater Process Technol 170(3):516–523
82.
Zurück zum Zitat Simchi A, Asgharzadeh H (2004) Densification and microstructural evaluation during laser sintering of M2 high speed steel powder. Mater Sci Technol 20(11):1462–1468 Simchi A, Asgharzadeh H (2004) Densification and microstructural evaluation during laser sintering of M2 high speed steel powder. Mater Sci Technol 20(11):1462–1468
83.
Zurück zum Zitat Mazumder J, Choi J, Nagarathnam K et al (1997) The direct metal deposition of H13 tool steel for 3-D components. JOM 49(5):55–60 Mazumder J, Choi J, Nagarathnam K et al (1997) The direct metal deposition of H13 tool steel for 3-D components. JOM 49(5):55–60
84.
Zurück zum Zitat Bhattacharya S, Dinda GP, Dasgupta AK et al (2011) Microstructural evolution of AISI 4340 steel during direct metal deposition process. Mater Sci Eng A 528(6):2309–2318 Bhattacharya S, Dinda GP, Dasgupta AK et al (2011) Microstructural evolution of AISI 4340 steel during direct metal deposition process. Mater Sci Eng A 528(6):2309–2318
85.
Zurück zum Zitat Xue Y, Pascu A, Horstemeyer MF (2010) Microporosity effects on cyclic plasticity and fatigue of LENS™-processed steel. Acta Mater 58(11):4029–4038 Xue Y, Pascu A, Horstemeyer MF (2010) Microporosity effects on cyclic plasticity and fatigue of LENS™-processed steel. Acta Mater 58(11):4029–4038
86.
Zurück zum Zitat Zheng B, Zhou Y, Smugeresky JE et al (2009) Processing and behavior of Fe-based metallic glass components via laser-engineered net shaping. Metall Mater Trans A 40(5):1235–1245 Zheng B, Zhou Y, Smugeresky JE et al (2009) Processing and behavior of Fe-based metallic glass components via laser-engineered net shaping. Metall Mater Trans A 40(5):1235–1245
87.
Zurück zum Zitat Singh SS, Roy D, Mitra R et al (2009) Studies on laser sintering of mechanically alloyed Al50Ti40Si10 composite. Mater Sci Eng A 501(1/2):242–247 Singh SS, Roy D, Mitra R et al (2009) Studies on laser sintering of mechanically alloyed Al50Ti40Si10 composite. Mater Sci Eng A 501(1/2):242–247
88.
Zurück zum Zitat Brandl E, Heckenberger U, Holzinger V et al (2012) Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34: 159–169 Brandl E, Heckenberger U, Holzinger V et al (2012) Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34: 159–169
89.
Zurück zum Zitat Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211(2):275–284 Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211(2):275–284
90.
Zurück zum Zitat Janaki Ram GD Esplin CK Stucker BE (2008) Microstructure and wear properties of LENS® deposited medical grade CoCrMo. J Mater Sci 19(5):2105–2111 Janaki Ram GD Esplin CK Stucker BE (2008) Microstructure and wear properties of LENS® deposited medical grade CoCrMo. J Mater Sci 19(5):2105–2111
91.
Zurück zum Zitat Xue CF, Dai Y, Tian XL (2006) Laser engineered net shaping of Co-based superalloys. Trans Nonferr Met Soc Chin 16: S1982–S1985 Xue CF, Dai Y, Tian XL (2006) Laser engineered net shaping of Co-based superalloys. Trans Nonferr Met Soc Chin 16: S1982–S1985
92.
Zurück zum Zitat Becker D, Meiners W, Wissenbach K (2009) Additive manufacturing of copper alloys by selective laser melting. Lasers in manufacturing (LiM 2009), Munich, Germany Becker D, Meiners W, Wissenbach K (2009) Additive manufacturing of copper alloys by selective laser melting. Lasers in manufacturing (LiM 2009), Munich, Germany
93.
Zurück zum Zitat Bhattacharya S, Dinda GP, Dasgupta AK et al (2011) Microstructural evolution and mechanical, and corrosion property evaluation of Cu-30Ni alloy formed by direct metal deposition process. J Alloy Compd 509(22):6364–6373 Bhattacharya S, Dinda GP, Dasgupta AK et al (2011) Microstructural evolution and mechanical, and corrosion property evaluation of Cu-30Ni alloy formed by direct metal deposition process. J Alloy Compd 509(22):6364–6373
94.
Zurück zum Zitat Xue WC, Krishna BV, Bandyopadhyay A et al (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3(6):1007–1018 Xue WC, Krishna BV, Bandyopadhyay A et al (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3(6):1007–1018
95.
Zurück zum Zitat Boccalini M, Goldenstein H (2001) Solidification of high speed steels. Int Mater Rev 46(2):92–115 Boccalini M, Goldenstein H (2001) Solidification of high speed steels. Int Mater Rev 46(2):92–115
96.
Zurück zum Zitat Facchini L, Magalini E, Robotti P et al (2010) Ductility of a Ti-6Al-4 V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping J 16(6):450–459 Facchini L, Magalini E, Robotti P et al (2010) Ductility of a Ti-6Al-4 V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping J 16(6):450–459
97.
Zurück zum Zitat Li YM, Yang H, Lin X et al (2003) The influences of processing parameters on forming characterizations during laser rapid forming. Mater Sci Eng A 360(1/2):18–25 Li YM, Yang H, Lin X et al (2003) The influences of processing parameters on forming characterizations during laser rapid forming. Mater Sci Eng A 360(1/2):18–25
98.
Zurück zum Zitat Paul CP, Ganesh P, Mishra SK et al (2007) Investigating laser rapid manufacturing for Inconel-625 components. Opt Laser Technol 39(4):800–805 Paul CP, Ganesh P, Mishra SK et al (2007) Investigating laser rapid manufacturing for Inconel-625 components. Opt Laser Technol 39(4):800–805
99.
Zurück zum Zitat Zhong ML, Sun HQ, Liu WJ et al (2005) Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scr Mater 53(2):159–164 Zhong ML, Sun HQ, Liu WJ et al (2005) Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scr Mater 53(2):159–164
100.
Zurück zum Zitat Das S (2003) Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater 5(10):701–711 Das S (2003) Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater 5(10):701–711
101.
Zurück zum Zitat Wright CS, Youseffi M, Akhtar SP et al (2006) Selective laser melting of prealloyed high alloy steel powder beds. Mater Sci Forum 514–516: 516–523 Wright CS, Youseffi M, Akhtar SP et al (2006) Selective laser melting of prealloyed high alloy steel powder beds. Mater Sci Forum 514–516: 516–523
102.
Zurück zum Zitat Childs THC, Hauser C, Badrossamay M (2005) Selective laser sintering (melting) of stainless and tool steel powders: experiments and modeling. Proc Inst Mech Eng B 219(4):339–357 Childs THC, Hauser C, Badrossamay M (2005) Selective laser sintering (melting) of stainless and tool steel powders: experiments and modeling. Proc Inst Mech Eng B 219(4):339–357
103.
Zurück zum Zitat Yadroitsev I, Shishkovsky I, Bertrand P et al (2009) Manufacturing of fine-structured 3D porous filter elements by selective laser melting. Appl Surf Sci 255(10):5523–5527 Yadroitsev I, Shishkovsky I, Bertrand P et al (2009) Manufacturing of fine-structured 3D porous filter elements by selective laser melting. Appl Surf Sci 255(10):5523–5527
104.
Zurück zum Zitat Zhu HH, Lu L, Fuh JYH (2006) Study on shrinkage behaviour of direct laser sintering metallic powder. Proc Inst Mech Eng B 220(2):183–190 Zhu HH, Lu L, Fuh JYH (2006) Study on shrinkage behaviour of direct laser sintering metallic powder. Proc Inst Mech Eng B 220(2):183–190
105.
Zurück zum Zitat Simchi A, Petzoldt F, Pohl H (2003) On the development of direct metal laser sintering for rapid tooling. J Mater Process Technol 141(3):319–328 Simchi A, Petzoldt F, Pohl H (2003) On the development of direct metal laser sintering for rapid tooling. J Mater Process Technol 141(3):319–328
106.
Zurück zum Zitat Simchi A, Pohl H (2004) Direct laser sintering of iron-graphite powder mixture. Mater Sci Eng A 383(2):191–200 Simchi A, Pohl H (2004) Direct laser sintering of iron-graphite powder mixture. Mater Sci Eng A 383(2):191–200
107.
Zurück zum Zitat Wang Y, Bergström J, Burman C (2006) Characterization of an iron-based laser sintered material. J Mater Process Technol 172(1):77–87 Wang Y, Bergström J, Burman C (2006) Characterization of an iron-based laser sintered material. J Mater Process Technol 172(1):77–87
108.
Zurück zum Zitat Zhu HH, Fuh JYH, Lu L (2003) Formation of Fe-Cu metal parts using direct laser sintering. Proc Inst Mech Eng C 217(1):139–147 Zhu HH, Fuh JYH, Lu L (2003) Formation of Fe-Cu metal parts using direct laser sintering. Proc Inst Mech Eng C 217(1):139–147
109.
Zurück zum Zitat Kruth JP, Kumar S, Van Vaerenbergh J (2005) Study of laser-sinterability of ferro-based powders. Rapid Prototyping J 11(5):287–292 Kruth JP, Kumar S, Van Vaerenbergh J (2005) Study of laser-sinterability of ferro-based powders. Rapid Prototyping J 11(5):287–292
110.
Zurück zum Zitat Kruth JP, Froyen L, Van Vaerenbergh J et al (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149(1–3):616–622 Kruth JP, Froyen L, Van Vaerenbergh J et al (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149(1–3):616–622
111.
Zurück zum Zitat Rombouts M, Kruth JP, Froyen L et al (2006) Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann—Manuf Technol 55(1):187–192 Rombouts M, Kruth JP, Froyen L et al (2006) Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann—Manuf Technol 55(1):187–192
112.
Zurück zum Zitat Chen XC, Xie JW, Fox P (2004) Direct laser remelting of iron with addition of boron. Mater Sci Technol 20(6):715–719 Chen XC, Xie JW, Fox P (2004) Direct laser remelting of iron with addition of boron. Mater Sci Technol 20(6):715–719
113.
Zurück zum Zitat Gu DD, Shen YF, Fang SQ et al (2007) Metallurgical mechanisms in direct laser sintering of Cu-CuSn-CuP mixed powder. J Alloys Compd 438(1/2):184–189 Gu DD, Shen YF, Fang SQ et al (2007) Metallurgical mechanisms in direct laser sintering of Cu-CuSn-CuP mixed powder. J Alloys Compd 438(1/2):184–189
114.
Zurück zum Zitat Lin X, Yue TM, Yang HO et al (2009) Phase evolution in laser rapid forming of compositionally graded Ti-Ni alloys. J Eng Mater Technol—Trans ASME 131(4):041002 Lin X, Yue TM, Yang HO et al (2009) Phase evolution in laser rapid forming of compositionally graded Ti-Ni alloys. J Eng Mater Technol—Trans ASME 131(4):041002
115.
Zurück zum Zitat Gao F, Wang HM (2008) Effect of TiNi in dry sliding wear of laser melt deposited Ti2Ni/TiNi alloys. Mater Charact 59(9):1349–1354 Gao F, Wang HM (2008) Effect of TiNi in dry sliding wear of laser melt deposited Ti2Ni/TiNi alloys. Mater Charact 59(9):1349–1354
116.
Zurück zum Zitat Gao F, Wang HM (2008) Dry sliding wear property of a laser melting/deposited Ti2Ni/TiNi intermetallic alloy. Intermetallics 16(2):202–208 Gao F, Wang HM (2008) Dry sliding wear property of a laser melting/deposited Ti2Ni/TiNi intermetallic alloy. Intermetallics 16(2):202–208
117.
Zurück zum Zitat Qu HP, Wang HM (2007) Microstructure and mechanical properties of laser melting deposited g-TiAl intermetallic alloys. Mater Sci Eng A 466(1/2):187–194 Qu HP, Wang HM (2007) Microstructure and mechanical properties of laser melting deposited g-TiAl intermetallic alloys. Mater Sci Eng A 466(1/2):187–194
118.
Zurück zum Zitat Gu DD, Shen YF, Lu ZJ (2009) Microstructural characteristics and formation mechanism of direct laser-sintered Cu-based alloys reinforced with Ni particles. Mater Des 30(6):2099–2017 Gu DD, Shen YF, Lu ZJ (2009) Microstructural characteristics and formation mechanism of direct laser-sintered Cu-based alloys reinforced with Ni particles. Mater Des 30(6):2099–2017
119.
Zurück zum Zitat Wang Y, Bergström J, Burman C (2006) Four-point bending fatigue behaviour of an iron-based laser sintered material. Int J Fatigue 28(12):1705–1715 Wang Y, Bergström J, Burman C (2006) Four-point bending fatigue behaviour of an iron-based laser sintered material. Int J Fatigue 28(12):1705–1715
120.
Zurück zum Zitat Lin X, Yue TM, Yang HO et al (2006) Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy. Acta Mater 54(7):1901–1915 Lin X, Yue TM, Yang HO et al (2006) Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy. Acta Mater 54(7):1901–1915
121.
Zurück zum Zitat Zhang FY, Chen J, Tan H et al (2009) Composition control for laser solid forming from blended elemental powders. Opt Laser Technol 41(5):601–607 Zhang FY, Chen J, Tan H et al (2009) Composition control for laser solid forming from blended elemental powders. Opt Laser Technol 41(5):601–607
122.
Zurück zum Zitat Sircar S, Ribaudo C, Mazumder J (1989) Laser-clad Ni70Al20Cr7Hf3 alloys with extended solid solution of Hf: part I. Microstructure evolution. Metall Trans A 20(11):2267–2277 Sircar S, Ribaudo C, Mazumder J (1989) Laser-clad Ni70Al20Cr7Hf3 alloys with extended solid solution of Hf: part I. Microstructure evolution. Metall Trans A 20(11):2267–2277
123.
Zurück zum Zitat Xue Y, Wang HM (2009) Microstructure and dry sliding wear resistance of CoTi intermetallic alloy. Intermetallics 17(3):89–97 Xue Y, Wang HM (2009) Microstructure and dry sliding wear resistance of CoTi intermetallic alloy. Intermetallics 17(3):89–97
124.
Zurück zum Zitat Dong LX, Wang HM (2008) Microstructure and corrosion properties of laser-melted deposited Ti2Ni3Si/NiTi intermetallic alloy. J Alloy Compd 465(1/2):83–89 Dong LX, Wang HM (2008) Microstructure and corrosion properties of laser-melted deposited Ti2Ni3Si/NiTi intermetallic alloy. J Alloy Compd 465(1/2):83–89
125.
Zurück zum Zitat Xue Y, Wang HM (2008) Microstructure and properties of Ti-Co-Si ternary intermetallic alloys. J Alloy Compd 464(1/2):138–145 Xue Y, Wang HM (2008) Microstructure and properties of Ti-Co-Si ternary intermetallic alloys. J Alloy Compd 464(1/2):138–145
126.
Zurück zum Zitat Gui YL, Wang HM (2007) Microstructure and dry sliding wear resistance of Moss-toughened Mo2Ni3Si metal silicide alloys. Int J Refract Met Hard Mater 25(5/6):433–439 Gui YL, Wang HM (2007) Microstructure and dry sliding wear resistance of Moss-toughened Mo2Ni3Si metal silicide alloys. Int J Refract Met Hard Mater 25(5/6):433–439
127.
Zurück zum Zitat Fang YL, Tang HB, Wang HM (2006) A wear resistant ductile metal-toughened Cr13Ni5Si2 ternary metal silicide alloy. Intermetallics 14(7):750–758 Fang YL, Tang HB, Wang HM (2006) A wear resistant ductile metal-toughened Cr13Ni5Si2 ternary metal silicide alloy. Intermetallics 14(7):750–758
128.
Zurück zum Zitat Liu Y, Wang HM (2005) Microstructure and high-temperature sliding wear property of Coss/Co3Mo2Si metal silicide alloys. Mater Sci Eng A 396(1/2):240–250 Liu Y, Wang HM (2005) Microstructure and high-temperature sliding wear property of Coss/Co3Mo2Si metal silicide alloys. Mater Sci Eng A 396(1/2):240–250
129.
Zurück zum Zitat Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1/2):1–184MathSciNet Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1/2):1–184MathSciNet
130.
Zurück zum Zitat Wang XC, Laoui T, Bonse J et al (2002) Direct selective laser sintering of hard metal powders: experimental study and simulation. Int J Adv Manuf Technol 19(5):351–357 Wang XC, Laoui T, Bonse J et al (2002) Direct selective laser sintering of hard metal powders: experimental study and simulation. Int J Adv Manuf Technol 19(5):351–357
131.
Zurück zum Zitat Kumar S (2009) Manufacturing of WC-Co moulds using SLS machine. J Mater Process Technol 209(8):3840–3848 Kumar S (2009) Manufacturing of WC-Co moulds using SLS machine. J Mater Process Technol 209(8):3840–3848
132.
Zurück zum Zitat Gläser T (2005) Laser sintering of tungsten carbide with cobalt binder phases, Fraunhofer IPT annual report, Fraunhofer IPT, Aachen, Germany Gläser T (2005) Laser sintering of tungsten carbide with cobalt binder phases, Fraunhofer IPT annual report, Fraunhofer IPT, Aachen, Germany
133.
Zurück zum Zitat Xiong YH, Smugeresky JE, Ajdelsztajn L et al (2008) Fabrication of WC-Co cermets by laser engineered net shaping. Mater Sci Eng A 493(1/2):261–266 Xiong YH, Smugeresky JE, Ajdelsztajn L et al (2008) Fabrication of WC-Co cermets by laser engineered net shaping. Mater Sci Eng A 493(1/2):261–266
134.
Zurück zum Zitat Picas JA, Xiong Y, Punset M et al (2009) Microstructure and wear resistance of WC-Co by three consolidation processing techniques. Int J Refract Met Hard Mater 27(2):344–349 Picas JA, Xiong Y, Punset M et al (2009) Microstructure and wear resistance of WC-Co by three consolidation processing techniques. Int J Refract Met Hard Mater 27(2):344–349
135.
Zurück zum Zitat Gåård A, Krakhmalev P, Bergström J (2006) Microstructural characterization and wear behavior of (Fe,Ni)-TiC MMC prepared by DMLS. J Alloys Compd 421(1/2):166–171 Gåård A, Krakhmalev P, Bergström J (2006) Microstructural characterization and wear behavior of (Fe,Ni)-TiC MMC prepared by DMLS. J Alloys Compd 421(1/2):166–171
136.
Zurück zum Zitat Srinivasa CK, Ramesh CS, Prabhakar SK (2010) Blending of iron and silicon carbide powders for producing metal matrix composites by laser sintering process. Rapid Prototyping J 16(4):258–267 Srinivasa CK, Ramesh CS, Prabhakar SK (2010) Blending of iron and silicon carbide powders for producing metal matrix composites by laser sintering process. Rapid Prototyping J 16(4):258–267
137.
Zurück zum Zitat Ghosh SK, Saha P, Kishore S (2010) Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process. Mater Sci Eng A 527(18/19):4694–4701 Ghosh SK, Saha P, Kishore S (2010) Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process. Mater Sci Eng A 527(18/19):4694–4701
138.
Zurück zum Zitat Simchi A, Godlinski D (2008) Effect of SiC particles on the laser sintering of Al-7Si-0.3Mg alloy. Scr Mater 59(2):199–202 Simchi A, Godlinski D (2008) Effect of SiC particles on the laser sintering of Al-7Si-0.3Mg alloy. Scr Mater 59(2):199–202
139.
Zurück zum Zitat Stucker BE, Bradley WL, Eubank PT et al (1999) Manufacture and use of ZrB2/Cu or TiB2/Cu composite electrodes, U.S. Patent 5933701 Stucker BE, Bradley WL, Eubank PT et al (1999) Manufacture and use of ZrB2/Cu or TiB2/Cu composite electrodes, U.S. Patent 5933701
140.
Zurück zum Zitat Sun CN, Baldridge T, Gupta MC (2009) Fabrication of ZrB2-Zr cermet using laser sintering technique. Mater Lett 63(28):2529–2531 Sun CN, Baldridge T, Gupta MC (2009) Fabrication of ZrB2-Zr cermet using laser sintering technique. Mater Lett 63(28):2529–2531
141.
Zurück zum Zitat Xiong Y, Kim M, Seo O et al (2010) (Ti,W)C-Ni cermets by laser engineered net shaping. Powder Metall 53(1):41–46 Xiong Y, Kim M, Seo O et al (2010) (Ti,W)C-Ni cermets by laser engineered net shaping. Powder Metall 53(1):41–46
142.
Zurück zum Zitat Zheng B, Topping T, Smugeresky JE et al (2010) The influence of Ni-coated TiC on laser-deposited IN625 metal matrix composites. Metall Mater Trans A 41(3):568–573 Zheng B, Topping T, Smugeresky JE et al (2010) The influence of Ni-coated TiC on laser-deposited IN625 metal matrix composites. Metall Mater Trans A 41(3):568–573
143.
Zurück zum Zitat Zheng B, Smugeresky JE, Zhou Y et al (2008) Microstructure and properties of laser-deposited Ti6Al4V metal matrix composites using Ni-coated powder. Metall Mater Trans A 39(5):1196–1205 Zheng B, Smugeresky JE, Zhou Y et al (2008) Microstructure and properties of laser-deposited Ti6Al4V metal matrix composites using Ni-coated powder. Metall Mater Trans A 39(5):1196–1205
144.
Zurück zum Zitat Liu WP, DuPont JN (2004) Fabrication of carbide-particle-reinforced titanium aluminide-matrix composites by laser-engineered net shaping. Metall Mater Trans A 35(3):1133–1140 Liu WP, DuPont JN (2004) Fabrication of carbide-particle-reinforced titanium aluminide-matrix composites by laser-engineered net shaping. Metall Mater Trans A 35(3):1133–1140
145.
Zurück zum Zitat Liu D, Zhang SQ, Li A et al (2010) High temperature mechanical properties of a laser melting deposited TiC/TA15 titanium matrix composite. J Alloys Compd 496(1/2):189–195 Liu D, Zhang SQ, Li A et al (2010) High temperature mechanical properties of a laser melting deposited TiC/TA15 titanium matrix composite. J Alloys Compd 496(1/2):189–195
146.
Zurück zum Zitat Balla VK, DeVasConCellos PD, Xue WC et al (2009) Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS). Acta Biomater 5(5):1831–1837 Balla VK, DeVasConCellos PD, Xue WC et al (2009) Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS). Acta Biomater 5(5):1831–1837
147.
Zurück zum Zitat Walker JC, Berggreen KM, Jones AR et al (2009) Fabrication of Fe-Cr-Al oxide dispersion strengthened PM2000 alloy using selective laser melting. Adv Eng Mater 11(7):541–546 Walker JC, Berggreen KM, Jones AR et al (2009) Fabrication of Fe-Cr-Al oxide dispersion strengthened PM2000 alloy using selective laser melting. Adv Eng Mater 11(7):541–546
148.
Zurück zum Zitat Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R 29(3/4):49–113 Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R 29(3/4):49–113
149.
Zurück zum Zitat Choi J, Mazumder J (1994) Non-equilibrium synthesis of Fe-Cr-C-W alloy by laser cladding. J Mater Sci 29(17):4460–4476 Choi J, Mazumder J (1994) Non-equilibrium synthesis of Fe-Cr-C-W alloy by laser cladding. J Mater Sci 29(17):4460–4476
150.
Zurück zum Zitat Zhong ML, Xu XY, Liu WJ et al (2004) Laser synthesizing NiAl intermetallic and TiC reinforced NiAl intermetallic matrix composite. J Laser Appl 16(3):160–166 Zhong ML, Xu XY, Liu WJ et al (2004) Laser synthesizing NiAl intermetallic and TiC reinforced NiAl intermetallic matrix composite. J Laser Appl 16(3):160–166
151.
Zurück zum Zitat Banerjee R, Genç A, Collins PC et al (2004) Comparison of microstructural evolution in laser-deposited and arc-melted In-Situ Ti-TiB composites. Metall Mater Trans A 35(7):2143–2152 Banerjee R, Genç A, Collins PC et al (2004) Comparison of microstructural evolution in laser-deposited and arc-melted In-Situ Ti-TiB composites. Metall Mater Trans A 35(7):2143–2152
152.
Zurück zum Zitat Banerjee R, Genç A, Hill D et al (2005) Nanoscale TiB precipitates in laser deposited Ti-matrix composites. Scr Mater 53(12):1433–1437 Banerjee R, Genç A, Hill D et al (2005) Nanoscale TiB precipitates in laser deposited Ti-matrix composites. Scr Mater 53(12):1433–1437
153.
Zurück zum Zitat Wang F, Mei J, Wu X (2008) Direct laser fabrication of Ti6Al4V/TiB. J Mater Process Technol 195(1–3):321–326 Wang F, Mei J, Wu X (2008) Direct laser fabrication of Ti6Al4V/TiB. J Mater Process Technol 195(1–3):321–326
154.
Zurück zum Zitat Gu DD, Shen YF, Meng GB (2009) Growth morphologies and mechanisms of TiC grains during selective laser melting of Ti-Al-C composite powder. Mater Lett 63(29):2536–2538 Gu DD, Shen YF, Meng GB (2009) Growth morphologies and mechanisms of TiC grains during selective laser melting of Ti-Al-C composite powder. Mater Lett 63(29):2536–2538
155.
Zurück zum Zitat Gu DD, Meiners W (2010) Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by selective laser melting. Mater Sci Eng A 527(29/30):7585–7592 Gu DD, Meiners W (2010) Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by selective laser melting. Mater Sci Eng A 527(29/30):7585–7592
156.
Zurück zum Zitat Gu DD, Shen YF, Lu ZJ (2009) Preparation of TiN-Ti5Si3 in-situ composites by selective laser melting. Mater Lett 63(18/19):1577–1579 Gu DD, Shen YF, Lu ZJ (2009) Preparation of TiN-Ti5Si3 in-situ composites by selective laser melting. Mater Lett 63(18/19):1577–1579
157.
Zurück zum Zitat Gu DD, Hagedorn YC, Meiners W et al (2011) Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance. Surf Coat Technol 205(10):3285–3292 Gu DD, Hagedorn YC, Meiners W et al (2011) Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance. Surf Coat Technol 205(10):3285–3292
158.
Zurück zum Zitat Tolochko NK, Laoui T, Khlopkov YV et al (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyping J 6(3):155–161 Tolochko NK, Laoui T, Khlopkov YV et al (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyping J 6(3):155–161
159.
Zurück zum Zitat Gusarov AV, Kruth JP (2005) Modelling of radiation transfer in metallic powders at laser treatment. Int J Heat Mass Trans 48(16):3423–3434MATH Gusarov AV, Kruth JP (2005) Modelling of radiation transfer in metallic powders at laser treatment. Int J Heat Mass Trans 48(16):3423–3434MATH
160.
Zurück zum Zitat Fischer P, Romano V, Weber HP et al (2003) Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Mater 51(6):1651–1662 Fischer P, Romano V, Weber HP et al (2003) Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Mater 51(6):1651–1662
161.
Zurück zum Zitat Takamichi I, Roderick ILG (eds) (1993) The physical properties of liquid metals. Clarendon Press, Oxford Takamichi I, Roderick ILG (eds) (1993) The physical properties of liquid metals. Clarendon Press, Oxford
162.
Zurück zum Zitat Niu HJ, Chang ITH (1999) Instability of scan tracks of selective laser sintering of high speed steel powder. Scr Mater 41(11):1229–1234 Niu HJ, Chang ITH (1999) Instability of scan tracks of selective laser sintering of high speed steel powder. Scr Mater 41(11):1229–1234
163.
Zurück zum Zitat Gu DD, Shen YF (2007) Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. J Alloy Compd 432(1/2):163–166MathSciNet Gu DD, Shen YF (2007) Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. J Alloy Compd 432(1/2):163–166MathSciNet
164.
Zurück zum Zitat Gu DD, Shen YF (2009) Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater Des 30(8):2903–2910 Gu DD, Shen YF (2009) Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater Des 30(8):2903–2910
165.
Zurück zum Zitat Wu X (2007) A review of laser fabrication of metallic engineering components and of materials. Mater Sci Technol 23(6):631–640 Wu X (2007) A review of laser fabrication of metallic engineering components and of materials. Mater Sci Technol 23(6):631–640
166.
Zurück zum Zitat Das M, Balla VK, Basu D et al (2010) Laser processing of SiC-particle-reinforced coating on titanium. Scr Mater 63(4):438–441 Das M, Balla VK, Basu D et al (2010) Laser processing of SiC-particle-reinforced coating on titanium. Scr Mater 63(4):438–441
167.
Zurück zum Zitat Hofmeister W, Griffith M, Ensz M et al (2001) Solidification in direct metal deposition by LENS processing. JOM 53(9):30–34 Hofmeister W, Griffith M, Ensz M et al (2001) Solidification in direct metal deposition by LENS processing. JOM 53(9):30–34
168.
Zurück zum Zitat Pinkerton AJ, Li L (2003) The effect of laser pulse width on multiple-layer 316L steel clad microstructure and surface finish. Appl Surf Sci 208–209:411–416 Pinkerton AJ, Li L (2003) The effect of laser pulse width on multiple-layer 316L steel clad microstructure and surface finish. Appl Surf Sci 208–209:411–416
169.
Zurück zum Zitat Gu DD, Meiners W, Hagedorn YC et al (2010) Bulk-form TiCx/Ti nanocomposites with controlled nanostructure prepared by a new method: selective laser melting. J Phys D: Appl Phys 43(29):295–301 Gu DD, Meiners W, Hagedorn YC et al (2010) Bulk-form TiCx/Ti nanocomposites with controlled nanostructure prepared by a new method: selective laser melting. J Phys D: Appl Phys 43(29):295–301
170.
Zurück zum Zitat Gu DD, Shen YF, Yang JL et al (2006) Effects of processing parameters on direct laser sintering of multicomponent Cu based metal powder. Mater Sci Technol 22(12):1449–1455 Gu DD, Shen YF, Yang JL et al (2006) Effects of processing parameters on direct laser sintering of multicomponent Cu based metal powder. Mater Sci Technol 22(12):1449–1455
171.
Zurück zum Zitat Hopkinson N, Majewski CE, Zarringhalam H (2009) Quantifying the degree of particle melt in Selective Laser Sintering®. CIRP Ann—Manuf Technol 58(1):197–200 Hopkinson N, Majewski CE, Zarringhalam H (2009) Quantifying the degree of particle melt in Selective Laser Sintering®. CIRP Ann—Manuf Technol 58(1):197–200
172.
Zurück zum Zitat Hao L, Dadbakhsh S, Seaman O et al (2009) Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. J Mater Process Technol 209(17):5793–5801 Hao L, Dadbakhsh S, Seaman O et al (2009) Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. J Mater Process Technol 209(17):5793–5801
173.
Zurück zum Zitat Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J 12(5):254–265 Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J 12(5):254–265
174.
Zurück zum Zitat Hagedorn YC, Wilkes J, Meiners W et al (2010) Net shaped high performance oxide ceramic parts by selective laser melting. Phys Proced 5:587–594 Hagedorn YC, Wilkes J, Meiners W et al (2010) Net shaped high performance oxide ceramic parts by selective laser melting. Phys Proced 5:587–594
175.
Zurück zum Zitat Kumar S, Kruth JP (2008) Wear performance of SLS/SLM materials. Adv Eng Mater 10(8):750–753 Kumar S, Kruth JP (2008) Wear performance of SLS/SLM materials. Adv Eng Mater 10(8):750–753
176.
Zurück zum Zitat Ramesh CS, Srinivas CK, Channabasappa BH (2009) Abrasive wear behaviour of laser sintered iron-SiC composites. Wear 267(11):1777–1783 Ramesh CS, Srinivas CK, Channabasappa BH (2009) Abrasive wear behaviour of laser sintered iron-SiC composites. Wear 267(11):1777–1783
177.
Zurück zum Zitat Choi J, Choudhuri SK, Mazumder J (2000) Role of preheating and specific energy input on the evolution of microstructure and wear properties of laser clad Fe-Cr-C-W alloys. J Mater Sci 35(13):3213–3219 Choi J, Choudhuri SK, Mazumder J (2000) Role of preheating and specific energy input on the evolution of microstructure and wear properties of laser clad Fe-Cr-C-W alloys. J Mater Sci 35(13):3213–3219
178.
Zurück zum Zitat Wang HM, Zhang SQ, Wang XM (2009) Progress and challenges of laser direct manufacturing of large titanium structural components. Chin J Lasers 36(12):3204–3209 Wang HM, Zhang SQ, Wang XM (2009) Progress and challenges of laser direct manufacturing of large titanium structural components. Chin J Lasers 36(12):3204–3209
Metadaten
Titel
Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms
verfasst von
Prof. Dr. Dongdong Gu
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46089-4_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.