Skip to main content

2015 | OriginalPaper | Buchkapitel

Latent Heat Thermal Storage (LHTS) for Energy Sustainability

verfasst von : M. R. Anisur, M. A. Kibria, M. H. Mahfuz, R. Saidur, I. H. S. C. Metselaar

Erschienen in: Energy Sustainability Through Green Energy

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to restrain the trend of present fossil fuel consumption, latent heat thermal storage (LHTS) using phase change material (PCM) has been received a common interest among scientists as it has high energy storage capacity. In this chapter, LHTS system and their applications for solar thermal power generation and building application have been discussed. The prospect of LHTS in reducing present fossil fuel consumption also has been demonstrated. Moreover, the recent development of PCM has been reported for practical LHTS application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adinberg R, Zvegilsky D, Epstein M (2010) Heat transfer efficient thermal energy storage for steam generation. Energy Convers Manag 51(1):9–15CrossRef Adinberg R, Zvegilsky D, Epstein M (2010) Heat transfer efficient thermal energy storage for steam generation. Energy Convers Manag 51(1):9–15CrossRef
Zurück zum Zitat Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14(2):615–628CrossRef Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14(2):615–628CrossRef
Zurück zum Zitat Akhilesh R, Narasimhan A, Balaji C (2005) Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int J Heat Mass Transf 48(13):2759–2770MATHCrossRef Akhilesh R, Narasimhan A, Balaji C (2005) Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int J Heat Mass Transf 48(13):2759–2770MATHCrossRef
Zurück zum Zitat Al-Abidi AA, Bin Mat S, Sopian K, Sulaiman MY, Lim CH, Th A (2012) Review of thermal energy storage for air conditioning systems. Renew Sustain Energy Rev 16(8):5802–5819CrossRef Al-Abidi AA, Bin Mat S, Sopian K, Sulaiman MY, Lim CH, Th A (2012) Review of thermal energy storage for air conditioning systems. Renew Sustain Energy Rev 16(8):5802–5819CrossRef
Zurück zum Zitat Anisur MR, Mahfuz MH, Kibria MA, Saidur R, Metselaar IHSC, Mahlia TMI (2013) Curbing global warming with phase change materials for energy storage. Renew Sustain Energy Rev 18:23–30CrossRef Anisur MR, Mahfuz MH, Kibria MA, Saidur R, Metselaar IHSC, Mahlia TMI (2013) Curbing global warming with phase change materials for energy storage. Renew Sustain Energy Rev 18:23–30CrossRef
Zurück zum Zitat Baetens R, Jelle BP, Gustavsen A (2010) Phase change materials for building applications: a state-of-the-art review. Energy Build 42(9):1361–1368CrossRef Baetens R, Jelle BP, Gustavsen A (2010) Phase change materials for building applications: a state-of-the-art review. Energy Build 42(9):1361–1368CrossRef
Zurück zum Zitat Bayón R, Rojas E, Valenzuela L, Zarza E, León J (2010) Analysis of the experimental behavior of a 100 kWth latent heat storage system for direct steam generation in solar thermal power plants. Appl Therm Eng 30(17):2643–2651CrossRef Bayón R, Rojas E, Valenzuela L, Zarza E, León J (2010) Analysis of the experimental behavior of a 100 kWth latent heat storage system for direct steam generation in solar thermal power plants. Appl Therm Eng 30(17):2643–2651CrossRef
Zurück zum Zitat Behzadi S, Farid MM (2011) Experimental and numerical investigations on the effect of using phase change materials for energy conservation in residential buildings. HVAC&R Res 17(3):366–376CrossRef Behzadi S, Farid MM (2011) Experimental and numerical investigations on the effect of using phase change materials for energy conservation in residential buildings. HVAC&R Res 17(3):366–376CrossRef
Zurück zum Zitat Birnbaum J, Eck M, Fichtner M, Hirsch T, Zimmermann G, Lehmann D (2010) A direct steam generation solar power plant with integrated thermal storage. J SolEnergy Eng 132(3):031014 Birnbaum J, Eck M, Fichtner M, Hirsch T, Zimmermann G, Lehmann D (2010) A direct steam generation solar power plant with integrated thermal storage. J SolEnergy Eng 132(3):031014
Zurück zum Zitat Cabeza LF, Castell A, Barreneche C, de Gracia A, Fernández AI (2011) Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev 15(3):1675–1695CrossRef Cabeza LF, Castell A, Barreneche C, de Gracia A, Fernández AI (2011) Materials used as PCM in thermal energy storage in buildings: a review. Renew Sustain Energy Rev 15(3):1675–1695CrossRef
Zurück zum Zitat Castell A, Solé C, Medrano M, Roca J, Cabeza LF, García D (2008) Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl Therm Eng 28(13):1676–1686CrossRef Castell A, Solé C, Medrano M, Roca J, Cabeza LF, García D (2008) Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl Therm Eng 28(13):1676–1686CrossRef
Zurück zum Zitat Cavallaro F (2010) Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Appl Energy 87(2):496–503CrossRef Cavallaro F (2010) Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Appl Energy 87(2):496–503CrossRef
Zurück zum Zitat Choi JC, Kim SD (1992) Heat-transfer characteristics of a latent heat storage system using MgCl2·6H2O. Energy 17(12):1153–1164CrossRef Choi JC, Kim SD (1992) Heat-transfer characteristics of a latent heat storage system using MgCl2·6H2O. Energy 17(12):1153–1164CrossRef
Zurück zum Zitat Dinçer İ, Rosen MA (2010) Thermal energy storage and environmental impact. In: Thermal energy storage. Wiley, Hoboken, pp 191–209 Dinçer İ, Rosen MA (2010) Thermal energy storage and environmental impact. In: Thermal energy storage. Wiley, Hoboken, pp 191–209
Zurück zum Zitat Esen M, Durmuş A, Durmuş A (1998) Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Sol Energy 62(1):19–28CrossRef Esen M, Durmuş A, Durmuş A (1998) Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Sol Energy 62(1):19–28CrossRef
Zurück zum Zitat Ewing D (2011) An investigation of the application of phase change materials in practical thermal management systems Ewing D (2011) An investigation of the application of phase change materials in practical thermal management systems
Zurück zum Zitat Fan L, Khodadadi JM (2011) Experimental verification of expedited freezing of nanoparticle-enhanced phase change materials (NEPCM). In: ASME conference proceedings 2011 (38921):T10221-T10221-10227 Fan L, Khodadadi JM (2011) Experimental verification of expedited freezing of nanoparticle-enhanced phase change materials (NEPCM). In: ASME conference proceedings 2011 (38921):T10221-T10221-10227
Zurück zum Zitat Fernandes D, Pitié F, Cáceres G, Baeyens J (2012) Thermal energy storage: “how previous findings determine current research priorities”. Energy 39(1):246–257CrossRef Fernandes D, Pitié F, Cáceres G, Baeyens J (2012) Thermal energy storage: “how previous findings determine current research priorities”. Energy 39(1):246–257CrossRef
Zurück zum Zitat Gharebaghi M, Sezai I (2007) Enhancement of heat transfer in latent heat storage modules with internal fins. Numer Heat Transf Part A Appl 53(7):749–765CrossRef Gharebaghi M, Sezai I (2007) Enhancement of heat transfer in latent heat storage modules with internal fins. Numer Heat Transf Part A Appl 53(7):749–765CrossRef
Zurück zum Zitat Guo C, Zhang W (2008) Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system. Energy Convers Manag 49(5):919–927CrossRef Guo C, Zhang W (2008) Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system. Energy Convers Manag 49(5):919–927CrossRef
Zurück zum Zitat Halawa E, Bruno F, Saman W (2005) Numerical analysis of a PCM thermal storage system with varying wall temperature. Energy Convers Manag 46(15–16):2592–2604CrossRef Halawa E, Bruno F, Saman W (2005) Numerical analysis of a PCM thermal storage system with varying wall temperature. Energy Convers Manag 46(15–16):2592–2604CrossRef
Zurück zum Zitat Incropera FP, Lavine AS, DeWitt DP (2011) Fundamentals of heat and mass transfer. Wiley, Hoboken Incropera FP, Lavine AS, DeWitt DP (2011) Fundamentals of heat and mass transfer. Wiley, Hoboken
Zurück zum Zitat Isaac M, Van Vuuren DP (2009) Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37(2):507–521CrossRef Isaac M, Van Vuuren DP (2009) Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37(2):507–521CrossRef
Zurück zum Zitat Jeon J, Lee J-H, Seo J, Jeong S-G, Kim S (2013) Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim 111(1):279−288 Jeon J, Lee J-H, Seo J, Jeong S-G, Kim S (2013) Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim 111(1):279−288
Zurück zum Zitat Kays WM, Crawford ME (1980) Convective heat and mass transfer. McGraw-Hill, New York Kays WM, Crawford ME (1980) Convective heat and mass transfer. McGraw-Hill, New York
Zurück zum Zitat Kwok AG, Rajkovich NB (2010) Addressing climate change in comfort standards. Build Environ 45(1):18–22CrossRef Kwok AG, Rajkovich NB (2010) Addressing climate change in comfort standards. Build Environ 45(1):18–22CrossRef
Zurück zum Zitat Lacroix M (1993) Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. Int J Heat Mass Transf 36(8):2083–2092CrossRef Lacroix M (1993) Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. Int J Heat Mass Transf 36(8):2083–2092CrossRef
Zurück zum Zitat Lacroix M, Benmadda M (1998) Analysis of natural convection melting from a heated wall with vertically oriented fins. Int J Numer Meth Heat Fluid Flow 8(4):465–478MATHCrossRef Lacroix M, Benmadda M (1998) Analysis of natural convection melting from a heated wall with vertically oriented fins. Int J Numer Meth Heat Fluid Flow 8(4):465–478MATHCrossRef
Zurück zum Zitat Laing D, Bahl C, Bauer T, Lehmann D, Steinmann W-D (2011) Thermal energy storage for direct steam generation. Sol Energy 85(4):627–633CrossRef Laing D, Bahl C, Bauer T, Lehmann D, Steinmann W-D (2011) Thermal energy storage for direct steam generation. Sol Energy 85(4):627–633CrossRef
Zurück zum Zitat Lamberg P (2004) Approximate analytical model for two-phase solidification problem in a finned phase-change material storage. Appl Energy 77(2):131–152CrossRef Lamberg P (2004) Approximate analytical model for two-phase solidification problem in a finned phase-change material storage. Appl Energy 77(2):131–152CrossRef
Zurück zum Zitat Mehling H, Cabeza L (2007) Phase change materials and their basic properties, thermal energy storage for sustainable energy consumption, vol 234. Springer, Netherlands Mehling H, Cabeza L (2007) Phase change materials and their basic properties, thermal energy storage for sustainable energy consumption, vol 234. Springer, Netherlands
Zurück zum Zitat Morisson V, Rady M, Palomo E, Arquis E (2008) Thermal energy storage systems for electricity production using solar energy direct steam generation technology. Chem Eng Process 47(3):499–507CrossRef Morisson V, Rady M, Palomo E, Arquis E (2008) Thermal energy storage systems for electricity production using solar energy direct steam generation technology. Chem Eng Process 47(3):499–507CrossRef
Zurück zum Zitat Mosaffa AH, Talati F, Basirat Tabrizi H, Rosen MA (2012) Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems. Energy Build 49:356–361CrossRef Mosaffa AH, Talati F, Basirat Tabrizi H, Rosen MA (2012) Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems. Energy Build 49:356–361CrossRef
Zurück zum Zitat Mosaffa AH, Infante Ferreira CA, Talati F, Rosen MA (2013) Thermal performance of a multiple PCM thermal storage unit for free cooling. Energy Convers Manag 67:1–7CrossRef Mosaffa AH, Infante Ferreira CA, Talati F, Rosen MA (2013) Thermal performance of a multiple PCM thermal storage unit for free cooling. Energy Convers Manag 67:1–7CrossRef
Zurück zum Zitat Nässén J, Holmberg J, Wadeskog A, Nyman M (2007) Direct and indirect energy use and carbon emissions in the production phase of buildings: an input–output analysis. Energy 32(9):1593–1602CrossRef Nässén J, Holmberg J, Wadeskog A, Nyman M (2007) Direct and indirect energy use and carbon emissions in the production phase of buildings: an input–output analysis. Energy 32(9):1593–1602CrossRef
Zurück zum Zitat Nema P, Nema S, Roy P (2012) An overview of global climate changing in current scenario and mitigation action. Renew Sustain Energy Rev 16(4):2329–2336CrossRef Nema P, Nema S, Roy P (2012) An overview of global climate changing in current scenario and mitigation action. Renew Sustain Energy Rev 16(4):2329–2336CrossRef
Zurück zum Zitat Oliver A (2012) Thermal characterization of gypsum boards with PCM included: thermal energy storage in buildings through latent heat. Energy Build 48:1–7MathSciNetCrossRef Oliver A (2012) Thermal characterization of gypsum boards with PCM included: thermal energy storage in buildings through latent heat. Energy Build 48:1–7MathSciNetCrossRef
Zurück zum Zitat Parameshwaran R, Kalaiselvam S, Harikrishnan S, Elayaperumal A (2012) Sustainable thermal energy storage technologies for buildings: a review. Renew Sustain Energy Rev 16(5):2394–2433CrossRef Parameshwaran R, Kalaiselvam S, Harikrishnan S, Elayaperumal A (2012) Sustainable thermal energy storage technologies for buildings: a review. Renew Sustain Energy Rev 16(5):2394–2433CrossRef
Zurück zum Zitat Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40(3):394–398CrossRef Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40(3):394–398CrossRef
Zurück zum Zitat Saman W, Bruno F, Halawa E (2005) Thermal performance of PCM thermal storage unit for a roof integrated solar heating system. Sol Energy 78(2):341–349CrossRef Saman W, Bruno F, Halawa E (2005) Thermal performance of PCM thermal storage unit for a roof integrated solar heating system. Sol Energy 78(2):341–349CrossRef
Zurück zum Zitat Scalat SG (1996) Full scale thermal performance of latent heat storage in PCM wallboard. Concordia University, Montreal Scalat SG (1996) Full scale thermal performance of latent heat storage in PCM wallboard. Concordia University, Montreal
Zurück zum Zitat Sharma SD, Sagara K (2005) Latent heat storage materials and systems: a review. Int J Green Energy 2(1):1–56CrossRef Sharma SD, Sagara K (2005) Latent heat storage materials and systems: a review. Int J Green Energy 2(1):1–56CrossRef
Zurück zum Zitat Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345CrossRef Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345CrossRef
Zurück zum Zitat Shatikian V, Ziskind G, Letan R (2005) Numerical investigation of a PCM-based heat sink with internal fins. Int J Heat Mass Transf 48(17):3689–3706MATHCrossRef Shatikian V, Ziskind G, Letan R (2005) Numerical investigation of a PCM-based heat sink with internal fins. Int J Heat Mass Transf 48(17):3689–3706MATHCrossRef
Zurück zum Zitat Shatikian V, Ziskind G, Letan R (2008) Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. Int J Heat Mass Transf 51(5):1488–1493CrossRef Shatikian V, Ziskind G, Letan R (2008) Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. Int J Heat Mass Transf 51(5):1488–1493CrossRef
Zurück zum Zitat Stritih U (2004) An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf 47(12):2841–2847CrossRef Stritih U (2004) An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf 47(12):2841–2847CrossRef
Zurück zum Zitat Su J-F, Wang X-Y, Wang S-B, Zhao Y-H, Huang Z (2012) Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage. Energy Convers Manag 55:101–107CrossRef Su J-F, Wang X-Y, Wang S-B, Zhao Y-H, Huang Z (2012) Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage. Energy Convers Manag 55:101–107CrossRef
Zurück zum Zitat Thirugnanasambandam M, Iniyan S, Goic R (2010) A review of solar thermal technologies. Renew Sustain Energy Rev 14(1):312–322CrossRef Thirugnanasambandam M, Iniyan S, Goic R (2010) A review of solar thermal technologies. Renew Sustain Energy Rev 14(1):312–322CrossRef
Zurück zum Zitat Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev 11(6):1146–1166CrossRef Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev 11(6):1146–1166CrossRef
Zurück zum Zitat Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev 15(2):1373–1391CrossRef Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev 15(2):1373–1391CrossRef
Zurück zum Zitat Vakilaltojjar SM, Saman W (2001) Analysis and modelling of a phase change storage system for air conditioning applications. Appl Therm Eng 21(3):249–263CrossRef Vakilaltojjar SM, Saman W (2001) Analysis and modelling of a phase change storage system for air conditioning applications. Appl Therm Eng 21(3):249–263CrossRef
Zurück zum Zitat Velraj R, Seeniraj R, Hafner B, Faber C, Schwarzer K (1997) Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit. Sol Energy 60(5):281–290CrossRef Velraj R, Seeniraj R, Hafner B, Faber C, Schwarzer K (1997) Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit. Sol Energy 60(5):281–290CrossRef
Zurück zum Zitat Voller VR (1990) Fast implicit finite-difference method for the analysis of phase change problems. Numer Heat Transf Part B Fundam 17(2):155–169MathSciNetCrossRef Voller VR (1990) Fast implicit finite-difference method for the analysis of phase change problems. Numer Heat Transf Part B Fundam 17(2):155–169MathSciNetCrossRef
Zurück zum Zitat Vyshak NR, Jilani G (2007) Numerical analysis of latent heat thermal energy storage system. Energy Convers Manag 48(7):2161–2168CrossRef Vyshak NR, Jilani G (2007) Numerical analysis of latent heat thermal energy storage system. Energy Convers Manag 48(7):2161–2168CrossRef
Zurück zum Zitat Yingqiu Z, Yinping Z, Yi J, Yanbing K (1999) Thermal storage and heat transfer in phase change material outside a circular tube with axial variation of the heat transfer fluid temperature. J Sol Energy Eng 121(3):145–149 Yingqiu Z, Yinping Z, Yi J, Yanbing K (1999) Thermal storage and heat transfer in phase change material outside a circular tube with axial variation of the heat transfer fluid temperature. J Sol Energy Eng 121(3):145–149
Zurück zum Zitat Zalba B, Marı́n JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23(3):251–283 Zalba B, Marı́n JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23(3):251–283
Zurück zum Zitat Zhang Y, Faghri A (1996a) Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. Int J Heat Mass Transf 39(15):3165–3173CrossRef Zhang Y, Faghri A (1996a) Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. Int J Heat Mass Transf 39(15):3165–3173CrossRef
Zurück zum Zitat Zhang Y, Faghri A (1996b) Semi-analytical solution of thermal energy storage system with conjugate laminar forced convection. Int J Heat Mass Transf 39(4):717–724MATHCrossRef Zhang Y, Faghri A (1996b) Semi-analytical solution of thermal energy storage system with conjugate laminar forced convection. Int J Heat Mass Transf 39(4):717–724MATHCrossRef
Zurück zum Zitat Zhou D, Zhao CY, Tian Y (2012a) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605CrossRef Zhou D, Zhao CY, Tian Y (2012a) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605CrossRef
Zurück zum Zitat Zhou D, Zhao CY, Tian Y (2012b) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605CrossRef Zhou D, Zhao CY, Tian Y (2012b) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605CrossRef
Zurück zum Zitat Zhu N, Ma Z, Wang S (2009) Dynamic characteristics and energy performance of buildings using phase change materials: a review. Energy Convers Manag 50(12):3169–3181CrossRef Zhu N, Ma Z, Wang S (2009) Dynamic characteristics and energy performance of buildings using phase change materials: a review. Energy Convers Manag 50(12):3169–3181CrossRef
Metadaten
Titel
Latent Heat Thermal Storage (LHTS) for Energy Sustainability
verfasst von
M. R. Anisur
M. A. Kibria
M. H. Mahfuz
R. Saidur
I. H. S. C. Metselaar
Copyright-Jahr
2015
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-2337-5_10