Skip to main content

2016 | OriginalPaper | Buchkapitel

Layer-by-Layer Assembly for Biofunctionalization of Cellulosic Fibers with Emergent Antimicrobial Agents

verfasst von : Ana P. Gomes, João F. Mano, João A. Queiroz, Isabel C. Gouveia

Erschienen in: Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coating with polyelectrolyte multilayers has become a generic way to functionalize a variety of materials. In particular, the layer-by-layer (LbL) technique allows the coating of solid surfaces to give them several functionalities, including controlled release of bioactive agents. At present there are a large number of applications of the LbL technique; however, it is still little explored in the area of textiles. In this review we present an overview of LbL for textile materials made from synthetic or natural fibers. More specifically, LbL is presented as a method for obtaining new bioactive cotton (as in cellulosic fibers) for potential application in the medical field. We also review recent progress in the embedding of active agents in adsorbed multilayers as a novel way to provide the system with a “reservoir” where bioactive agents can be loaded for subsequent release.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gouveia IC, Sa D, Henriques M (2012) Functionalization of wool with l-cysteine: process characterization and assessment of antimicrobial activity and cytotoxicity. J Appl Polym Sci 124(2):1352–1358CrossRef Gouveia IC, Sa D, Henriques M (2012) Functionalization of wool with l-cysteine: process characterization and assessment of antimicrobial activity and cytotoxicity. J Appl Polym Sci 124(2):1352–1358CrossRef
2.
Zurück zum Zitat Gouveia IC (2012) Synthesis and characterization of a microsphere-based coating for textiles with potential as an in situ bioactive delivery system. Polym Adv Technol 23(3):350–356CrossRef Gouveia IC (2012) Synthesis and characterization of a microsphere-based coating for textiles with potential as an in situ bioactive delivery system. Polym Adv Technol 23(3):350–356CrossRef
3.
Zurück zum Zitat Caldeira E et al (2013) Biofunctionalization of cellulosic fibers with l-cysteine: assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiellapneumoniae. J Biotechnol 168(4):426–435CrossRef Caldeira E et al (2013) Biofunctionalization of cellulosic fibers with l-cysteine: assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiellapneumoniae. J Biotechnol 168(4):426–435CrossRef
4.
Zurück zum Zitat Nogueira F et al (2014) Covalent modification of cellulosic-based textiles: a new strategy to obtain antimicrobial properties. Biotechnol Bioprocess Eng 19(3):526–533CrossRef Nogueira F et al (2014) Covalent modification of cellulosic-based textiles: a new strategy to obtain antimicrobial properties. Biotechnol Bioprocess Eng 19(3):526–533CrossRef
5.
Zurück zum Zitat Singh R et al (2005) Antimicrobial activity of some natural dyes. Dyes Pigments 66(2):99–102CrossRef Singh R et al (2005) Antimicrobial activity of some natural dyes. Dyes Pigments 66(2):99–102CrossRef
6.
Zurück zum Zitat Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78(1):60–72CrossRef Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78(1):60–72CrossRef
7.
Zurück zum Zitat Papaspyrides CD, Pavlidou S, Vouyiouka SN (2009) Development of advanced textile materials: natural fiber composites, anti-microbial, and flame-retardant fabrics. Proc Inst of Mech Eng L J Mater Des Appl 223(2):91–102CrossRef Papaspyrides CD, Pavlidou S, Vouyiouka SN (2009) Development of advanced textile materials: natural fiber composites, anti-microbial, and flame-retardant fabrics. Proc Inst of Mech Eng L J Mater Des Appl 223(2):91–102CrossRef
8.
Zurück zum Zitat Chang SC et al (2014) Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process. Ind Eng Chem Res 53(10):3805–3812CrossRef Chang SC et al (2014) Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process. Ind Eng Chem Res 53(10):3805–3812CrossRef
9.
Zurück zum Zitat Murphy PS, Evans GR (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:190436 Murphy PS, Evans GR (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:190436
10.
Zurück zum Zitat Gowri S et al (2010) Polymer nanocomposites for multifunctional finishing of textiles – a review. Text Res J 80(13):1290–1306CrossRef Gowri S et al (2010) Polymer nanocomposites for multifunctional finishing of textiles – a review. Text Res J 80(13):1290–1306CrossRef
11.
Zurück zum Zitat MazeyarGashti FA, Song G, Kiumarsi A (2012) Characterization of nanocomposite coating on textiles: a brief review on microscopic technology. Curr Microsc Contrib Adv Sci Technol 2:1424–1437 MazeyarGashti FA, Song G, Kiumarsi A (2012) Characterization of nanocomposite coating on textiles: a brief review on microscopic technology. Curr Microsc Contrib Adv Sci Technol 2:1424–1437
12.
Zurück zum Zitat Lee H et al (2008) Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv Mater 20(9):1619–1623CrossRef Lee H et al (2008) Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv Mater 20(9):1619–1623CrossRef
13.
Zurück zum Zitat Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210(1–2):831–835CrossRef Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210(1–2):831–835CrossRef
14.
Zurück zum Zitat Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237CrossRef Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237CrossRef
15.
Zurück zum Zitat Lvov Y et al (1999) A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. Colloids Surf A Physicochem Eng Asp 146(1–3):337–346CrossRef Lvov Y et al (1999) A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. Colloids Surf A Physicochem Eng Asp 146(1–3):337–346CrossRef
16.
Zurück zum Zitat Pavlukhina S, Sukhishvili S (2011) Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev 63(9):822–836CrossRef Pavlukhina S, Sukhishvili S (2011) Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev 63(9):822–836CrossRef
17.
Zurück zum Zitat Picart C et al (2001) Determination of structural parameters characterizing thin films by optical methods: a comparison between scanning angle reflectometry and optical waveguide lightmode spectroscopy. J Chem Phys 115(2):1086–1094CrossRef Picart C et al (2001) Determination of structural parameters characterizing thin films by optical methods: a comparison between scanning angle reflectometry and optical waveguide lightmode spectroscopy. J Chem Phys 115(2):1086–1094CrossRef
18.
Zurück zum Zitat Li Y, Wang X, Sun JQ (2012) Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc Rev 41(18):5998–6009CrossRef Li Y, Wang X, Sun JQ (2012) Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc Rev 41(18):5998–6009CrossRef
19.
Zurück zum Zitat Such GK, Johnston APR, Caruso F (2011) Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem Soc Rev 40(1):19–29CrossRef Such GK, Johnston APR, Caruso F (2011) Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem Soc Rev 40(1):19–29CrossRef
20.
Zurück zum Zitat de Villiers MM et al (2011) Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv Drug Deliv Rev 63(9):701–715CrossRef de Villiers MM et al (2011) Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv Drug Deliv Rev 63(9):701–715CrossRef
21.
Zurück zum Zitat Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114CrossRef Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114CrossRef
22.
Zurück zum Zitat Chen W, McCarthy TJ (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30(1):78–86CrossRef Chen W, McCarthy TJ (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30(1):78–86CrossRef
23.
Zurück zum Zitat Caruso F et al (2000) Microencapsulation of uncharged low molecular weight organic materials by polyelectrolyte multilayer self-assembly. Langmuir 16(23):8932–8936CrossRef Caruso F et al (2000) Microencapsulation of uncharged low molecular weight organic materials by polyelectrolyte multilayer self-assembly. Langmuir 16(23):8932–8936CrossRef
24.
Zurück zum Zitat Wohl BM, Engbersen JFJ (2012) Responsive layer-by-layer materials for drug delivery. J Control Release 158(1):2–14CrossRef Wohl BM, Engbersen JFJ (2012) Responsive layer-by-layer materials for drug delivery. J Control Release 158(1):2–14CrossRef
25.
Zurück zum Zitat Mano JF et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030CrossRef Mano JF et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030CrossRef
26.
Zurück zum Zitat Onda M et al (1996) Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. Biotechnol Bioeng 51(2):163–167CrossRef Onda M et al (1996) Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. Biotechnol Bioeng 51(2):163–167CrossRef
27.
Zurück zum Zitat Onda M et al (1996) Sequential reaction and product separation on molecular films of glucoamylase and glucose oxidase assembled on an ultrafilter. J Ferment Bioeng 82(5):502–506CrossRef Onda M et al (1996) Sequential reaction and product separation on molecular films of glucoamylase and glucose oxidase assembled on an ultrafilter. J Ferment Bioeng 82(5):502–506CrossRef
28.
Zurück zum Zitat Lvov Y et al (1996) Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin a and glycogen. Thin Solid Films 284:797–801CrossRef Lvov Y et al (1996) Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin a and glycogen. Thin Solid Films 284:797–801CrossRef
29.
Zurück zum Zitat Caruso F et al (1997) Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing.2. Langmuir 13(13):3427–3433CrossRef Caruso F et al (1997) Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing.2. Langmuir 13(13):3427–3433CrossRef
30.
Zurück zum Zitat Cai P et al (2013) Adsorbed BMP-2 in polyelectrolyte multilayer films for enhanced early osteogenic differentiation of mesenchymal stem cells. Colloids Surf A Physicochem Eng Asp 434:110–117CrossRef Cai P et al (2013) Adsorbed BMP-2 in polyelectrolyte multilayer films for enhanced early osteogenic differentiation of mesenchymal stem cells. Colloids Surf A Physicochem Eng Asp 434:110–117CrossRef
31.
Zurück zum Zitat Divyalakshmi TV et al (2013) Subpicomolar sensing of hydrogen peroxide with ovalbumin-embedded chitosan/polystyrene sulfonate multilayer membrane. Anal Biochem 440(1):49–55CrossRef Divyalakshmi TV et al (2013) Subpicomolar sensing of hydrogen peroxide with ovalbumin-embedded chitosan/polystyrene sulfonate multilayer membrane. Anal Biochem 440(1):49–55CrossRef
32.
Zurück zum Zitat Guillot R et al (2013) The stability of BMP loaded polyelectrolyte multilayer coatings on titanium. Biomaterials 34(23):5737–5746CrossRef Guillot R et al (2013) The stability of BMP loaded polyelectrolyte multilayer coatings on titanium. Biomaterials 34(23):5737–5746CrossRef
33.
Zurück zum Zitat Anandhakumar S, Raichur AM (2013) Polyelectrolyte/silver nanocomposite multilayer films as multifunctional thin film platforms for remote activated protein and drug delivery. Acta Biomater 9(11):8864–8874CrossRef Anandhakumar S, Raichur AM (2013) Polyelectrolyte/silver nanocomposite multilayer films as multifunctional thin film platforms for remote activated protein and drug delivery. Acta Biomater 9(11):8864–8874CrossRef
34.
Zurück zum Zitat Ladam G et al (2001) Protein adsorption onto auto-assembled polyelectrolyte films. Langmuir 17(3):878–882CrossRef Ladam G et al (2001) Protein adsorption onto auto-assembled polyelectrolyte films. Langmuir 17(3):878–882CrossRef
35.
Zurück zum Zitat Jessel N et al (2003) Bioactive coatings based on a polyelectrolyte multilayer architecture functionalized by embedded proteins. Adv Mater 15(9):692–695CrossRef Jessel N et al (2003) Bioactive coatings based on a polyelectrolyte multilayer architecture functionalized by embedded proteins. Adv Mater 15(9):692–695CrossRef
36.
Zurück zum Zitat Vodouhe C et al (2006) Control of drug accessibility on functional polyelectrolyte multilayer films. Biomaterials 27(22):4149–4156CrossRef Vodouhe C et al (2006) Control of drug accessibility on functional polyelectrolyte multilayer films. Biomaterials 27(22):4149–4156CrossRef
37.
Zurück zum Zitat Chluba J et al (2001) Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity. Biomacromolecules 2(3):800–805CrossRef Chluba J et al (2001) Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity. Biomacromolecules 2(3):800–805CrossRef
38.
Zurück zum Zitat Caruso F, Schuler C (2000) Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity. Langmuir 16(24):9595–9603CrossRef Caruso F, Schuler C (2000) Enzyme multilayers on colloid particles: assembly, stability, and enzymatic activity. Langmuir 16(24):9595–9603CrossRef
39.
Zurück zum Zitat Vodouhe C et al (2005) Effect of functionalization of multilayered polyelectrolyte films on motoneuron growth. Biomaterials 26(5):545–554CrossRef Vodouhe C et al (2005) Effect of functionalization of multilayered polyelectrolyte films on motoneuron growth. Biomaterials 26(5):545–554CrossRef
40.
Zurück zum Zitat Tezcaner A et al (2006) Polyelectrolyte multilayer films as substrates for photoreceptor cells. Biomacromolecules 7(1):86–94CrossRef Tezcaner A et al (2006) Polyelectrolyte multilayer films as substrates for photoreceptor cells. Biomacromolecules 7(1):86–94CrossRef
41.
Zurück zum Zitat Leguen E et al (2007) Bioactive coatings based on polyelectrolyte multilayer architectures functionalized by embedded proteins, peptides or drugs. Biomol Eng 24(1):33–41CrossRef Leguen E et al (2007) Bioactive coatings based on polyelectrolyte multilayer architectures functionalized by embedded proteins, peptides or drugs. Biomol Eng 24(1):33–41CrossRef
42.
Zurück zum Zitat Costa RR, Mano JF (2014) Polyelectrolyte multilayered assemblies in biomedical technologies. Chem Soc Rev 43(10):3453–3479CrossRef Costa RR, Mano JF (2014) Polyelectrolyte multilayered assemblies in biomedical technologies. Chem Soc Rev 43(10):3453–3479CrossRef
43.
Zurück zum Zitat Wang Q, Hauser PJ (2010) Developing a novel UV protection process for cotton based on layer-by-layer self-assembly. Carbohydr Polym 81(2):491–496CrossRef Wang Q, Hauser PJ (2010) Developing a novel UV protection process for cotton based on layer-by-layer self-assembly. Carbohydr Polym 81(2):491–496CrossRef
44.
Zurück zum Zitat Iamphaojeen Y, Siriphannon P (2012) Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte. Int J Mater Res 103(5):643–647CrossRef Iamphaojeen Y, Siriphannon P (2012) Immobilization of zinc oxide nanoparticles on cotton fabrics using poly 4-styrenesulfonic acid polyelectrolyte. Int J Mater Res 103(5):643–647CrossRef
45.
Zurück zum Zitat Wang LL et al (2011) Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl Mater Interfaces 3(4):1277–1281CrossRef Wang LL et al (2011) Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl Mater Interfaces 3(4):1277–1281CrossRef
46.
Zurück zum Zitat Zhao Y et al (2010) Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy. Appl Surf Sci 256(22):6736–6742CrossRef Zhao Y et al (2010) Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy. Appl Surf Sci 256(22):6736–6742CrossRef
47.
Zurück zum Zitat Carosio F et al (2013) Green DNA-based flame retardant coatings assembled through layer by layer. Polymer 54(19):5148–5153CrossRef Carosio F et al (2013) Green DNA-based flame retardant coatings assembled through layer by layer. Polymer 54(19):5148–5153CrossRef
48.
Zurück zum Zitat Carosio F et al (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96(5):745–750CrossRef Carosio F et al (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96(5):745–750CrossRef
49.
Zurück zum Zitat Li YC et al (2010) Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4(6):3325–3337CrossRef Li YC et al (2010) Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4(6):3325–3337CrossRef
50.
Zurück zum Zitat Joshi M et al (2011) Chitosan nanocoating on cotton textile substrate using layer-by-layer self-assembly technique. J Appl Polym Sci 119(5):2793–2799CrossRef Joshi M et al (2011) Chitosan nanocoating on cotton textile substrate using layer-by-layer self-assembly technique. J Appl Polym Sci 119(5):2793–2799CrossRef
51.
Zurück zum Zitat Ali SW, Joshi M, Rajendran S (2011) Novel, self-assembled antimicrobial textile coating containing chitosan nanoparticles. AATCC Rev 11(5):49–55 Ali SW, Joshi M, Rajendran S (2011) Novel, self-assembled antimicrobial textile coating containing chitosan nanoparticles. AATCC Rev 11(5):49–55
52.
Zurück zum Zitat Gomes AP et al (2012) Layer-by-layer deposition of antibacterial polyelectrolytes on cotton fibers. J Polym Environ 20(4):1084–1094CrossRef Gomes AP et al (2012) Layer-by-layer deposition of antibacterial polyelectrolytes on cotton fibers. J Polym Environ 20(4):1084–1094CrossRef
53.
Zurück zum Zitat Gomes AP et al (2013) Layer-by-layer deposition of antimicrobial polymers on cellulosic fibers: a new strategy to develop bioactive textiles. Polym Adv Technol 24(11):1005–1010CrossRef Gomes AP et al (2013) Layer-by-layer deposition of antimicrobial polymers on cellulosic fibers: a new strategy to develop bioactive textiles. Polym Adv Technol 24(11):1005–1010CrossRef
54.
Zurück zum Zitat Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A Physicochem Eng Asp 289(1–3):105–109CrossRef Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A Physicochem Eng Asp 289(1–3):105–109CrossRef
55.
Zurück zum Zitat Caridade SG et al (2013) Free-standing polyelectrolyte membranes made of chitosan and alginate. Biomacromolecules 14(5):1653–1660CrossRef Caridade SG et al (2013) Free-standing polyelectrolyte membranes made of chitosan and alginate. Biomacromolecules 14(5):1653–1660CrossRef
56.
Zurück zum Zitat Hyde K, Dong H, Hinestroza JP (2007) Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14(6):615–623CrossRef Hyde K, Dong H, Hinestroza JP (2007) Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14(6):615–623CrossRef
57.
Zurück zum Zitat Polowinski S (2005) Polyelectrolyte layer-by-layer processed coated textiles. Fibers Text East Eur 13(6):50–52 Polowinski S (2005) Polyelectrolyte layer-by-layer processed coated textiles. Fibers Text East Eur 13(6):50–52
58.
Zurück zum Zitat Dubas ST et al (2006) Assembly of polyelectrolyte multilayers on nylon fibers. J Appl Polym Sci 101(5):3286–3290CrossRef Dubas ST et al (2006) Assembly of polyelectrolyte multilayers on nylon fibers. J Appl Polym Sci 101(5):3286–3290CrossRef
59.
Zurück zum Zitat Polowinski S (2007) Deposition of polymer complex layers onto nonwoven textiles. J Appl Polym Sci 103(3):1700–1705CrossRef Polowinski S (2007) Deposition of polymer complex layers onto nonwoven textiles. J Appl Polym Sci 103(3):1700–1705CrossRef
60.
Zurück zum Zitat Jantas R, Polowinski S (2007) Modifying of polyester fabric surface with polyelectrolyte nanolayers using the layer-by-layer deposition technique. Fibers Text East Eur 15(2):97–99 Jantas R, Polowinski S (2007) Modifying of polyester fabric surface with polyelectrolyte nanolayers using the layer-by-layer deposition technique. Fibers Text East Eur 15(2):97–99
61.
Zurück zum Zitat Polowinski S, Stawski D (2007) Thermogravimetric measurements of poly(propylene) nonwovens containing deposited layers of polyelectrolytes and colloidal particles of noble metals. Fibers Text East Eur 15(4):82–85 Polowinski S, Stawski D (2007) Thermogravimetric measurements of poly(propylene) nonwovens containing deposited layers of polyelectrolytes and colloidal particles of noble metals. Fibers Text East Eur 15(4):82–85
62.
Zurück zum Zitat Stawski D, Bellmann C (2009) Electrokinetic properties of polypropylene textile fabrics containing deposited layers of polyelectrolytes. Colloids Surf A Physicochem Eng Asp 345(1-3):191–194CrossRef Stawski D, Bellmann C (2009) Electrokinetic properties of polypropylene textile fabrics containing deposited layers of polyelectrolytes. Colloids Surf A Physicochem Eng Asp 345(1-3):191–194CrossRef
63.
Zurück zum Zitat Park JH et al (2009) Polyelectrolyte multilayer coated nanofibrous mats: controlled surface morphology and cell culture. Fibers Polym 10(4):419–424CrossRef Park JH et al (2009) Polyelectrolyte multilayer coated nanofibrous mats: controlled surface morphology and cell culture. Fibers Polym 10(4):419–424CrossRef
64.
Zurück zum Zitat Martin A et al (2013) Multilayered textile coating based on a beta-cyclodextrin polyelectrolyte for the controlled release of drugs. Carbohydr Polym 93(2):718–730CrossRef Martin A et al (2013) Multilayered textile coating based on a beta-cyclodextrin polyelectrolyte for the controlled release of drugs. Carbohydr Polym 93(2):718–730CrossRef
65.
Zurück zum Zitat Martin A et al (2013) Build-up of an antimicrobial multilayer coating on a textile support based on a methylene blue-poly(cyclodextrin) complex. Biomed Mater 8(6):065006CrossRef Martin A et al (2013) Build-up of an antimicrobial multilayer coating on a textile support based on a methylene blue-poly(cyclodextrin) complex. Biomed Mater 8(6):065006CrossRef
66.
Zurück zum Zitat Hyde K, Rusa M, Hinestroza J (2005) Layer-by-layer deposition of polyelectrolyte nanolayers on natural fibers: cotton. Nanotechnology 16(7):S422–S428CrossRef Hyde K, Rusa M, Hinestroza J (2005) Layer-by-layer deposition of polyelectrolyte nanolayers on natural fibers: cotton. Nanotechnology 16(7):S422–S428CrossRef
67.
Zurück zum Zitat Wang Q, Hauser PJ (2009) New characterization of layer-by-layer self-assembly deposition of polyelectrolytes on cotton fabric. Cellulose 16(6):1123–1131CrossRef Wang Q, Hauser PJ (2009) New characterization of layer-by-layer self-assembly deposition of polyelectrolytes on cotton fabric. Cellulose 16(6):1123–1131CrossRef
68.
Zurück zum Zitat Ali SW, Rajendran S, Joshi M (2010) Effect of process parameters on layer-by-layer self-assembly of polyelectrolytes on cotton substrate. Polym Polym Compos 18(5):175–187 Ali SW, Rajendran S, Joshi M (2010) Effect of process parameters on layer-by-layer self-assembly of polyelectrolytes on cotton substrate. Polym Polym Compos 18(5):175–187
69.
Zurück zum Zitat Zhao Y et al (2013) Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides. Appl Surf Sci 286:364–370CrossRef Zhao Y et al (2013) Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides. Appl Surf Sci 286:364–370CrossRef
70.
Zurück zum Zitat Ugur SS et al (2010) Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res Lett 5(7):1204–1210CrossRef Ugur SS et al (2010) Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res Lett 5(7):1204–1210CrossRef
71.
Zurück zum Zitat Zhao Y et al (2012) Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics. Langmuir 28(15):6328–6335CrossRef Zhao Y et al (2012) Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics. Langmuir 28(15):6328–6335CrossRef
72.
Zurück zum Zitat Apaydin K et al (2013) Polyallylamine-montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab 98(2):627–634CrossRef Apaydin K et al (2013) Polyallylamine-montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab 98(2):627–634CrossRef
73.
Zurück zum Zitat Cerkez I (2013) Rapid disinfection by N-halamine polyelectrolytes. J Bioact Compat Polym 28(1):86–96CrossRef Cerkez I (2013) Rapid disinfection by N-halamine polyelectrolytes. J Bioact Compat Polym 28(1):86–96CrossRef
74.
Zurück zum Zitat Cerkez I et al (2011) N-halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir 27(7):4091–4097CrossRef Cerkez I et al (2011) N-halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir 27(7):4091–4097CrossRef
75.
Zurück zum Zitat Gomes A, Mano J, Queiroz J, Gouveia I (2010) Assessment of bacteria-textile interactions using scanning electron microscopy: a study on LbL chitosan/alginate coated cotton. In: Méndez-Vilas A, Diaz J (eds) Microscopy: science, technology, applications and education. Formatex, Badajoz, pp 286–292 Gomes A, Mano J, Queiroz J, Gouveia I (2010) Assessment of bacteria-textile interactions using scanning electron microscopy: a study on LbL chitosan/alginate coated cotton. In: Méndez-Vilas A, Diaz J (eds) Microscopy: science, technology, applications and education. Formatex, Badajoz, pp 286–292
76.
Zurück zum Zitat Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21(13):2506–2514CrossRef Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21(13):2506–2514CrossRef
77.
Zurück zum Zitat Sanders W, Anderson MR (2009) Electrostatic deposition of polycations and polyanions onto cysteine monolayers. J Colloid Interface Sci 331(2):318–321CrossRef Sanders W, Anderson MR (2009) Electrostatic deposition of polycations and polyanions onto cysteine monolayers. J Colloid Interface Sci 331(2):318–321CrossRef
78.
Zurück zum Zitat Pedrosa VA et al (2007) Studies on the electrochemical behavior of a cystine self-assembled monolayer modified electrode using ferrocyanide as a probe. J Electroanal Chem 602(2):149–155CrossRef Pedrosa VA et al (2007) Studies on the electrochemical behavior of a cystine self-assembled monolayer modified electrode using ferrocyanide as a probe. J Electroanal Chem 602(2):149–155CrossRef
79.
Zurück zum Zitat Martins GV et al (2010) Crosslink effect and albumin adsorption onto chitosan/alginate multilayered systems: an in situ QCM-D study. Macromol Biosci 10(12):1444–1455CrossRef Martins GV et al (2010) Crosslink effect and albumin adsorption onto chitosan/alginate multilayered systems: an in situ QCM-D study. Macromol Biosci 10(12):1444–1455CrossRef
80.
Zurück zum Zitat Gomes AP et al (2014) New biomaterial based on cotton with incorporated biomolecules. J Appl Polym Sci 131(15):40519CrossRef Gomes AP et al (2014) New biomaterial based on cotton with incorporated biomolecules. J Appl Polym Sci 131(15):40519CrossRef
81.
Zurück zum Zitat Wang YC et al (2003) Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24(6):1047–1057CrossRef Wang YC et al (2003) Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24(6):1047–1057CrossRef
82.
Zurück zum Zitat Rujitanaroj PO, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49(21):4723–4732CrossRef Rujitanaroj PO, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49(21):4723–4732CrossRef
83.
Zurück zum Zitat Dong Y et al (2010) A novel CHS/ALG bi-layer composite membrane with sustained antimicrobial efficacy used as wound dressing. Chin Chem Lett 21(8):1011–1014CrossRef Dong Y et al (2010) A novel CHS/ALG bi-layer composite membrane with sustained antimicrobial efficacy used as wound dressing. Chin Chem Lett 21(8):1011–1014CrossRef
84.
Zurück zum Zitat Seo MD et al (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17(10):12276–12286CrossRef Seo MD et al (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17(10):12276–12286CrossRef
85.
Zurück zum Zitat Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184CrossRef Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184CrossRef
86.
Zurück zum Zitat Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547CrossRef Reddy KVR, Yedery RD, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547CrossRef
87.
Zurück zum Zitat Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38(3):217–225 Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38(3):217–225
88.
Zurück zum Zitat Costa F et al (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440CrossRef Costa F et al (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440CrossRef
89.
Zurück zum Zitat Maroti G et al (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162(4):363–374CrossRef Maroti G et al (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162(4):363–374CrossRef
90.
Zurück zum Zitat Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395CrossRef Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395CrossRef
91.
Zurück zum Zitat Li YM et al (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37(2):207–215CrossRef Li YM et al (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37(2):207–215CrossRef
92.
Zurück zum Zitat Edwards JV et al (1999) Synthesis and activity of NH2- and COOH-terminal elastase recognition sequences on cotton. J Pept Res 54(6):536–543CrossRef Edwards JV et al (1999) Synthesis and activity of NH2- and COOH-terminal elastase recognition sequences on cotton. J Pept Res 54(6):536–543CrossRef
93.
Zurück zum Zitat Gouveia IC (2010) Nanobiotechnology: a new strategy to develop non-toxic antimicrobial textiles. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 407–414 Gouveia IC (2010) Nanobiotechnology: a new strategy to develop non-toxic antimicrobial textiles. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 407–414
94.
Zurück zum Zitat da Silva FP, Machado MCC (2012) Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides 36(2):308–314CrossRef da Silva FP, Machado MCC (2012) Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides 36(2):308–314CrossRef
95.
Zurück zum Zitat Pedrosa M et al. (2014) Comparison of the antibacterial activity of modified-cotton with magainin I and LL-37 with potential as wound-dressings. J Appl Polym Sci 131(21):40997. doi: 10.1002/app.40997 Pedrosa M et al. (2014) Comparison of the antibacterial activity of modified-cotton with magainin I and LL-37 with potential as wound-dressings. J Appl Polym Sci 131(21):40997. doi: 10.1002/app.40997
96.
Zurück zum Zitat Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2(1):1–33 Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2(1):1–33
97.
Zurück zum Zitat Zhang LJ, Rozek A, Hancock REW (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276(38):35714–35722CrossRef Zhang LJ, Rozek A, Hancock REW (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276(38):35714–35722CrossRef
98.
Zurück zum Zitat Harris F, Dennison SR, Phoenix DA (2009) Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 10(6):585–606CrossRef Harris F, Dennison SR, Phoenix DA (2009) Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 10(6):585–606CrossRef
99.
Zurück zum Zitat Zhang XJ, Clark CA, Pettis GS (2003) Interstrain inhibition in the sweet potato pathogen streptomyces ipomoeae: purification and characterization of a highly specific bacteriocin and cloning of its structural gene. Appl Environ Microbiol 69(4):2201–2208CrossRef Zhang XJ, Clark CA, Pettis GS (2003) Interstrain inhibition in the sweet potato pathogen streptomyces ipomoeae: purification and characterization of a highly specific bacteriocin and cloning of its structural gene. Appl Environ Microbiol 69(4):2201–2208CrossRef
100.
Zurück zum Zitat Hassan M et al (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113(4):723–736CrossRef Hassan M et al (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113(4):723–736CrossRef
101.
Zurück zum Zitat Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6(10), e1001067CrossRef Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6(10), e1001067CrossRef
102.
Zurück zum Zitat Silva NC, Sarmento B, Pintado M (2013) The importance of antimicrobial peptides and their potential for therapeutic use in ophthalmology. Int J Antimicrob Agents 41(1):5–10CrossRef Silva NC, Sarmento B, Pintado M (2013) The importance of antimicrobial peptides and their potential for therapeutic use in ophthalmology. Int J Antimicrob Agents 41(1):5–10CrossRef
103.
Zurück zum Zitat Gomes AP, Mano JF, Queiroz JA, Gouveia IC (2015) Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applications. Carbohydr Polym 127:451–461CrossRef Gomes AP, Mano JF, Queiroz JA, Gouveia IC (2015) Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applications. Carbohydr Polym 127:451–461CrossRef
104.
Zurück zum Zitat Shukla A et al (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357CrossRef Shukla A et al (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357CrossRef
105.
Zurück zum Zitat Sobczak M et al (2013) Polymeric systems of antimicrobial peptides-strategies and potential applications. Molecules 18(11):14122–14137CrossRef Sobczak M et al (2013) Polymeric systems of antimicrobial peptides-strategies and potential applications. Molecules 18(11):14122–14137CrossRef
Metadaten
Titel
Layer-by-Layer Assembly for Biofunctionalization of Cellulosic Fibers with Emergent Antimicrobial Agents
verfasst von
Ana P. Gomes
João F. Mano
João A. Queiroz
Isabel C. Gouveia
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/12_2015_318

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.