Skip to main content

2016 | OriginalPaper | Buchkapitel

5. Layered Double Hydroxides Supported on Graphene Oxide for CO2 Adsorption

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is concerned with the study of layered double hydroxides supported on graphene oxide. The chapter begins describing the methodology used to synthesise LDHs and LDH/carbon hybrids. Subsequently, the structural and physical properties of the adsorbents are examined by a range of characterisation techniques. The adsorption capacity and thermal stability of the materials are reported. Finally, the description of CO2 adsorption equilibrium data under dry conditions using Langmuir, Freundlich and Toth isotherms is included.  

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The surface charge density was calculated using the surface area of the dried graphene oxide sample measured by N2 physisorption (55 m2 g−1). The surface area of the GO sample is relatively low compared to that of the completely exfoliated GO, probably due to restacking during drying.
 
2
Representative N 2 physisorption isotherms of the LDH/GO hybrids that are not presented in this chapter can be found in Appendix D.1.
 
3
See the surface area of the pure LDH reported in Chap. 4 and Ref. [1].
 
4
The composition of the samples of the preliminary studies was measured by ICP (after the work was published). The values are presented in Appendix D.3. The content of sodium in the samples was found to be relatively high (1.2–1.7 wt% Na).
 
5
The equation used to calculate the isosteric heat of adsorption can be found in Sect. 2.​2.​1.​1 of Chap. 2.
 
Literatur
1.
Zurück zum Zitat Garcia-Gallastegui, A., Iruretagoyena, D., Gouvea, V., Mokhtar, M., Asiri, A. M., Basahel, S. N., et al. (2012). Graphene oxide as support for layered double hydroxides: Enhancing the CO2 adsorption capacity. Chemistry of Materials, 24(23), 4531–4539.CrossRef Garcia-Gallastegui, A., Iruretagoyena, D., Gouvea, V., Mokhtar, M., Asiri, A. M., Basahel, S. N., et al. (2012). Graphene oxide as support for layered double hydroxides: Enhancing the CO2 adsorption capacity. Chemistry of Materials, 24(23), 4531–4539.CrossRef
2.
Zurück zum Zitat Hutson, N. D., Speakman, S. A., & Payzant, E. A. (2004). Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chemistry of Materials, 16(21), 4135–4143.CrossRef Hutson, N. D., Speakman, S. A., & Payzant, E. A. (2004). Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chemistry of Materials, 16(21), 4135–4143.CrossRef
3.
Zurück zum Zitat Ram Reddy, M. K., Xu, Z. P., Lu, G. Q., & Diniz da Costa, J. C. (2006). Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Industrial and Engineering Chemistry Research, 45(22), 7504–7509.CrossRef Ram Reddy, M. K., Xu, Z. P., Lu, G. Q., & Diniz da Costa, J. C. (2006). Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Industrial and Engineering Chemistry Research, 45(22), 7504–7509.CrossRef
4.
Zurück zum Zitat Hu, H., Bhowmik, P., Zhao, B., Hamon, M. A., Itkis, M. E., & Haddon, R. C. (2001). Determination of the acidic sites of purified single-walled carbon nanotubes by acid–base titration. Chemical Physics Letters, 345(1–2), 25–28.CrossRef Hu, H., Bhowmik, P., Zhao, B., Hamon, M. A., Itkis, M. E., & Haddon, R. C. (2001). Determination of the acidic sites of purified single-walled carbon nanotubes by acid–base titration. Chemical Physics Letters, 345(1–2), 25–28.CrossRef
5.
Zurück zum Zitat Verdejo, R., Lamoriniere, S., Cottam, B., Bismarck, A., & Shaffer, M. (2007). Removal of oxidation debris from multi-walled carbon nanotubes. Chemical Communications, 5, 513–515.CrossRef Verdejo, R., Lamoriniere, S., Cottam, B., Bismarck, A., & Shaffer, M. (2007). Removal of oxidation debris from multi-walled carbon nanotubes. Chemical Communications, 5, 513–515.CrossRef
6.
Zurück zum Zitat Zhao, H., & Nagy, K. L. (2004). Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. Journal of Colloid and Interface Science, 274(2), 613–624.CrossRef Zhao, H., & Nagy, K. L. (2004). Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. Journal of Colloid and Interface Science, 274(2), 613–624.CrossRef
7.
Zurück zum Zitat Rourke, J. P., Pandey, P. A., Moore, J. J., Bates, M., Kinloch, I. A., Young, R. J., et al. (2011). The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angewandte Chemie, 50(14), 3173–3177. Rourke, J. P., Pandey, P. A., Moore, J. J., Bates, M., Kinloch, I. A., Young, R. J., et al. (2011). The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angewandte Chemie, 50(14), 3173–3177.
8.
Zurück zum Zitat Millange, F., Walton, R. I., & O’Hare, D. (2000). Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg–Al–carbonate hydrotalcite-like compounds. Journal of Materials Chemistry, 10(7), 1713–1720.CrossRef Millange, F., Walton, R. I., & O’Hare, D. (2000). Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg–Al–carbonate hydrotalcite-like compounds. Journal of Materials Chemistry, 10(7), 1713–1720.CrossRef
9.
Zurück zum Zitat Latterini, L., Elisei, F., Aloisi, G. G., Costantino, U., & Nocchetti, M. (2002). Space-resolved fluorescence properties of phenolphthalein-hydrotalcite nanocomposites. Physical Chemistry Chemical Physics, 4(12), 2792–2798.CrossRef Latterini, L., Elisei, F., Aloisi, G. G., Costantino, U., & Nocchetti, M. (2002). Space-resolved fluorescence properties of phenolphthalein-hydrotalcite nanocomposites. Physical Chemistry Chemical Physics, 4(12), 2792–2798.CrossRef
10.
Zurück zum Zitat Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., et al. (2004). Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor. Journal of Catalysis, 228(1), 43–55. Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., et al. (2004). Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor. Journal of Catalysis, 228(1), 43–55.
11.
Zurück zum Zitat Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by powders & porous solids. London, UK: Academic Press. Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by powders & porous solids. London, UK: Academic Press.
12.
Zurück zum Zitat Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.CrossRef Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.CrossRef
13.
Zurück zum Zitat Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry—A European Journal, 15(16), 3920–3935.CrossRef Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry—A European Journal, 15(16), 3920–3935.CrossRef
14.
Zurück zum Zitat Di Cosimo, J. I., Apesteguía, C. R., Ginés, M. J. L., & Iglesia, E. (2000). Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. Journal of Catalysis, 190(2), 261–275.CrossRef Di Cosimo, J. I., Apesteguía, C. R., Ginés, M. J. L., & Iglesia, E. (2000). Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. Journal of Catalysis, 190(2), 261–275.CrossRef
15.
Zurück zum Zitat Redhead, P. A. (1962). Thermal desorption of gases. Vacuum, 12(4), 203–211.CrossRef Redhead, P. A. (1962). Thermal desorption of gases. Vacuum, 12(4), 203–211.CrossRef
16.
Zurück zum Zitat Falconer, J. L., & Schwarz, J. A. (1983). Temperature-programmed desorption and reaction: Applications to supported catalysts. Catalysis Reviews, 25(2), 141–227.CrossRef Falconer, J. L., & Schwarz, J. A. (1983). Temperature-programmed desorption and reaction: Applications to supported catalysts. Catalysis Reviews, 25(2), 141–227.CrossRef
17.
Zurück zum Zitat Hutson, N. D., & Attwood, B. C. (2008). High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 14(6), 781–789.CrossRef Hutson, N. D., & Attwood, B. C. (2008). High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 14(6), 781–789.CrossRef
18.
Zurück zum Zitat Hufton, J. R., Mayorga, S., & Sircar, S. (1999). Sorption-enhanced reaction process for hydrogen production. AIChE Journal, 45(2), 248–256.CrossRef Hufton, J. R., Mayorga, S., & Sircar, S. (1999). Sorption-enhanced reaction process for hydrogen production. AIChE Journal, 45(2), 248–256.CrossRef
19.
Zurück zum Zitat Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef
20.
Zurück zum Zitat Ram Reddy, M. K., Xu, Z. P., & Diniz da Costa, J. C. (2008). Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Industrial and Engineering Chemistry Research, 47(8), 2630–2635.CrossRef Ram Reddy, M. K., Xu, Z. P., & Diniz da Costa, J. C. (2008). Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Industrial and Engineering Chemistry Research, 47(8), 2630–2635.CrossRef
21.
Zurück zum Zitat Machado, B. F., & Serp, P. (2012). Graphene-based materials for catalysis. Catalysis Science & Technology, 2(1), 54–75.CrossRef Machado, B. F., & Serp, P. (2012). Graphene-based materials for catalysis. Catalysis Science & Technology, 2(1), 54–75.CrossRef
22.
Zurück zum Zitat Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & van den Brink, R. W. (2009). Modeling study of the sorption-enhanced reaction process for CO2 Capture. I. Model development and validation. Industrial and Engineering Chemistry Research, 48(15), 6966–6974.CrossRef Reijers, H. T. J., Boon, J., Elzinga, G. D., Cobden, P. D., Haije, W. G., & van den Brink, R. W. (2009). Modeling study of the sorption-enhanced reaction process for CO2 Capture. I. Model development and validation. Industrial and Engineering Chemistry Research, 48(15), 6966–6974.CrossRef
23.
Zurück zum Zitat Lee, K. B., Verdooren, A., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on potassium-carbonate-promoted hydrotalcite. Journal of Colloid and Interface Science, 308(1), 30–39.CrossRef Lee, K. B., Verdooren, A., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on potassium-carbonate-promoted hydrotalcite. Journal of Colloid and Interface Science, 308(1), 30–39.CrossRef
24.
Zurück zum Zitat Oliveira, E. L. G., Grande, C. A., & Rodrigues, A. E. (2008). CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Separation and Purification Technology, 62(1), 137–147.CrossRef Oliveira, E. L. G., Grande, C. A., & Rodrigues, A. E. (2008). CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Separation and Purification Technology, 62(1), 137–147.CrossRef
25.
Zurück zum Zitat Soares, J., Casarin, G., José, H., Moreira, R. P. M., & Rodrigues, A. (2005). Experimental and theoretical analysis for the CO2 adsorption on hydrotalcite. Adsorption, 11(1), 237–241.CrossRef Soares, J., Casarin, G., José, H., Moreira, R. P. M., & Rodrigues, A. (2005). Experimental and theoretical analysis for the CO2 adsorption on hydrotalcite. Adsorption, 11(1), 237–241.CrossRef
26.
Zurück zum Zitat Halabi, M. H., de Croon, M. H. J. M., van der Schaaf, J., Cobden, P. D., & Schouten, J. C. (2012). High capacity potassium-promoted hydrotalcite for CO2 capture in H2 production. International Journal of Hydrogen Energy, 37(5), 4516–4525.CrossRef Halabi, M. H., de Croon, M. H. J. M., van der Schaaf, J., Cobden, P. D., & Schouten, J. C. (2012). High capacity potassium-promoted hydrotalcite for CO2 capture in H2 production. International Journal of Hydrogen Energy, 37(5), 4516–4525.CrossRef
27.
Zurück zum Zitat Kinniburgh, D. G. (1986). General purpose adsorption isotherms. Environmental Science and Technology, 20(9), 895–904.CrossRef Kinniburgh, D. G. (1986). General purpose adsorption isotherms. Environmental Science and Technology, 20(9), 895–904.CrossRef
28.
Zurück zum Zitat Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on sodium oxide promoted alumina. AIChE Journal, 53(11), 2824–2831.CrossRef Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2007). Chemisorption of carbon dioxide on sodium oxide promoted alumina. AIChE Journal, 53(11), 2824–2831.CrossRef
Metadaten
Titel
Layered Double Hydroxides Supported on Graphene Oxide for CO2 Adsorption
verfasst von
Diana Iruretagoyena Ferrer
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-41276-4_5