Skip to main content

2024 | OriginalPaper | Buchkapitel

Leading and Trailing Edge Configuration for Distributed Electric Propulsion Systems

verfasst von : Mithun Eqbal, Matthew Marino, Patrick Farley

Erschienen in: Green Approaches in Sustainable Aviation

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In pusher-type aircraft, the impact of putting the propeller on the trailing edge and impact of propeller on the tip of the wing have been carefully researched. The results reveal an increase in propelling efficiency and a reduction in drag. In addition, there is a lot of study being done right now on distributed propulsion and the advantages it has in terms of aerodynamic effects and propelling advantages. This paves way for the possibility of positioning the propeller on the trailing edge of the wing and using the increased propulsive efficiency afforded by boundary layer ingestion (BLI). This research studies the effect of positioning the propeller on the trailing edge of the wing instead of the leading edge on power savings and advances in propulsive efficiency. A scaled remotely piloted aircraft systems (RPAS) wing is tested in a wind tunnel utilizing a brushless direct current (BLDC) engine with several propeller configurations. A new term, ingestion ratio (IR), is introduced to describe the effect of the change in propeller size on power savings. The investigation revealed that positioning the propeller on the trailing edge of the wing increases the propelling efficiency by up to 5.8% and saves up to 24.7% of electricity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Berg, F., Palmer, J., Miller, P., Husband, M., & Dodds, G. (2015). HTS electrical system for a distributed propulsion aircraft. IEEE Transactions on Applied Superconductivity, 25(3), 1–5.CrossRef Berg, F., Palmer, J., Miller, P., Husband, M., & Dodds, G. (2015). HTS electrical system for a distributed propulsion aircraft. IEEE Transactions on Applied Superconductivity, 25(3), 1–5.CrossRef
Zurück zum Zitat Blumenthal, B. T., Elmiligui, A. A., Geiselhart, K. A., Campbell, R. L., Maughmer, M. D., & Schmitz, S. (2019). Computational investigation of a boundary-layer ingesting propulsion system for the common research model. Journal of Aircraft, 55(3), 1141–1153.CrossRef Blumenthal, B. T., Elmiligui, A. A., Geiselhart, K. A., Campbell, R. L., Maughmer, M. D., & Schmitz, S. (2019). Computational investigation of a boundary-layer ingesting propulsion system for the common research model. Journal of Aircraft, 55(3), 1141–1153.CrossRef
Zurück zum Zitat Borer, N. K., Patterson, M. D., Viken, J. K., Moore, M. D., Bevirt, J., Stoll, A. M., & Gibson, A. R. (2016). Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator. In 16th AIAA aviation technology, integration, and operations conference (p. 3920). Borer, N. K., Patterson, M. D., Viken, J. K., Moore, M. D., Bevirt, J., Stoll, A. M., & Gibson, A. R. (2016). Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator. In 16th AIAA aviation technology, integration, and operations conference (p. 3920).
Zurück zum Zitat Budziszewski, N., & Friedrichs, J. (2018). Modelling of a boundary layer ingesting propulsor. Energies (Basel), 11(4), 708.CrossRef Budziszewski, N., & Friedrichs, J. (2018). Modelling of a boundary layer ingesting propulsor. Energies (Basel), 11(4), 708.CrossRef
Zurück zum Zitat Davies, K., Norman, P., Jones, C., Galloway, S., & Husband, M. (2013). A review of turboelectric distributed propulsion technologies for N+ 3 aircraft electrical systems (pp. 1–5). IEEE. Davies, K., Norman, P., Jones, C., Galloway, S., & Husband, M. (2013). A review of turboelectric distributed propulsion technologies for N+ 3 aircraft electrical systems (pp. 1–5). IEEE.
Zurück zum Zitat El-Salamony, M., & Teperin, L. (2017). 2D numerical investigation of boundary layer ingestion propulsor on Airfoil. In 7th European conference for aeronautics and aerospace sciences, Milan, Italy. El-Salamony, M., & Teperin, L. (2017). 2D numerical investigation of boundary layer ingestion propulsor on Airfoil. In 7th European conference for aeronautics and aerospace sciences, Milan, Italy.
Zurück zum Zitat Gohardani, A. S., Doulgeris, G., & Singh, R. (2011). Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for all electric commercial aircraft. Progress in Aerospace Sciences, 47(5), 369–391.CrossRef Gohardani, A. S., Doulgeris, G., & Singh, R. (2011). Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for all electric commercial aircraft. Progress in Aerospace Sciences, 47(5), 369–391.CrossRef
Zurück zum Zitat Gray, J. S., Mader, C. A., Kenway, G. K. W., & Martins, J. R. R. A. (2018). Modeling boundary layer ingestion using a coupled aeropropulsive analysis. Journal of Aircraft, 55(3), 1191–1199.CrossRef Gray, J. S., Mader, C. A., Kenway, G. K. W., & Martins, J. R. R. A. (2018). Modeling boundary layer ingestion using a coupled aeropropulsive analysis. Journal of Aircraft, 55(3), 1191–1199.CrossRef
Zurück zum Zitat Hall, D. K., Huang, A. C., Uranga, A., Greitzer, E. M., Drela, M., & Sato, S. (2017). Boundary layer ingestion propulsion benefit for transport aircraft. Journal of Propulsion and Power, 33(5), 1118–1129.CrossRef Hall, D. K., Huang, A. C., Uranga, A., Greitzer, E. M., Drela, M., & Sato, S. (2017). Boundary layer ingestion propulsion benefit for transport aircraft. Journal of Propulsion and Power, 33(5), 1118–1129.CrossRef
Zurück zum Zitat Hendricks, E. S. (2018). A review of boundary layer ingestion modeling approaches for use in conceptual design. NASA Glenn Research Center. Hendricks, E. S. (2018). A review of boundary layer ingestion modeling approaches for use in conceptual design. NASA Glenn Research Center.
Zurück zum Zitat Huang, X., Zhao, X., & Huang, J. (2018). A simplified model for predicting the propeller-wing interaction. Aircraft Engineering and Aerospace Technology, 90(1), 196–201.CrossRef Huang, X., Zhao, X., & Huang, J. (2018). A simplified model for predicting the propeller-wing interaction. Aircraft Engineering and Aerospace Technology, 90(1), 196–201.CrossRef
Zurück zum Zitat Itoh, M., Tamano, S., Yokota, K., & Ninagawa, M. (2005). Velocity measurement in turbulent boundary layer of drag-reducing surfactant solution. Physics of Fluids (1994), 17(7), 1–9.CrossRefMATH Itoh, M., Tamano, S., Yokota, K., & Ninagawa, M. (2005). Velocity measurement in turbulent boundary layer of drag-reducing surfactant solution. Physics of Fluids (1994), 17(7), 1–9.CrossRefMATH
Zurück zum Zitat Ko, A., Schetz, J., & Mason, W. (2003). Assessment of the potential advantages of distributed propulsion for aircraft. In XVI international symposium on air breathing engines, Cleveland, Ohio. Ko, A., Schetz, J., & Mason, W. (2003). Assessment of the potential advantages of distributed propulsion for aircraft. In XVI international symposium on air breathing engines, Cleveland, Ohio.
Zurück zum Zitat Mantič-Lugo, V., Doulgeris, G., & Singh, R. (2013). Computational analysis of the effects of a boundary layer ingesting propulsion system in transonic flow. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(8), 1215–1232.CrossRef Mantič-Lugo, V., Doulgeris, G., & Singh, R. (2013). Computational analysis of the effects of a boundary layer ingesting propulsion system in transonic flow. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(8), 1215–1232.CrossRef
Zurück zum Zitat Plas, A., Crichton, D., Sargeant, M., Hynes, T., Greitzer, E., Hall, C., & Madani, V. (2007, January). Performance of a boundary layer ingesting (BLI) propulsion system. In AIAA 2007–450. 45th AIAA aerospace sciences meeting and exhibit. Plas, A., Crichton, D., Sargeant, M., Hynes, T., Greitzer, E., Hall, C., & Madani, V. (2007, January). Performance of a boundary layer ingesting (BLI) propulsion system. In AIAA 2007–450. 45th AIAA aerospace sciences meeting and exhibit.
Zurück zum Zitat Rothhaar, P. M., Murphy, P. C., Bacon, B. J., Gregory, I. M., Grauer, J. A., Busan, R. C., & Croom, M. A. (2014). NASA Langley distributed propulsion VTOL tiltwing aircraft testing, modeling, simulation, control, and flight test development. In 14th AIAA aviation technology, integration, and operations conference (p. 2999). Rothhaar, P. M., Murphy, P. C., Bacon, B. J., Gregory, I. M., Grauer, J. A., Busan, R. C., & Croom, M. A. (2014). NASA Langley distributed propulsion VTOL tiltwing aircraft testing, modeling, simulation, control, and flight test development. In 14th AIAA aviation technology, integration, and operations conference (p. 2999).
Zurück zum Zitat Sinnige, T., Stokkermans, T. C. A., Arnhem, N., & Veldhuis, L. L. M. (2019). Aerodynamic performance of a wingtip-mounted tractor propeller configuration in windmilling and energy-harvesting conditions. In AIAA aviation 2019 forum (p. 1624105890). Sinnige, T., Stokkermans, T. C. A., Arnhem, N., & Veldhuis, L. L. M. (2019). Aerodynamic performance of a wingtip-mounted tractor propeller configuration in windmilling and energy-harvesting conditions. In AIAA aviation 2019 forum (p. 1624105890).
Zurück zum Zitat Stoll, A. M., Bevirt, J., Moore, M. D., Fredericks, W. J., & Borer, N. K. (2014). Drag reduction through distributed electric propulsion. In Aviation technology, integration, and operations conference, 16–20 June 2014, Atlanta, Georgia. Stoll, A. M., Bevirt, J., Moore, M. D., Fredericks, W. J., & Borer, N. K. (2014). Drag reduction through distributed electric propulsion. In Aviation technology, integration, and operations conference, 16–20 June 2014, Atlanta, Georgia.
Zurück zum Zitat Tiseira Izaguirre, A. O., García-Cuevas González, L. M., Quintero Igeño, P., & Varela Martínez, P. (2021). Series-hybridisation, distributed electric propulsion and boundary layer ingestion in long-endurance, small remotely piloted aircraft: Fuel consumption improvements. Aerospace Science and Technology, 2021, 107227. Tiseira Izaguirre, A. O., García-Cuevas González, L. M., Quintero Igeño, P., & Varela Martínez, P. (2021). Series-hybridisation, distributed electric propulsion and boundary layer ingestion in long-endurance, small remotely piloted aircraft: Fuel consumption improvements. Aerospace Science and Technology, 2021, 107227.
Zurück zum Zitat Valencia, E., Alulema, V., Rodriguez, D., Laskaridis, P., & Roumeliotis, I. (2020). Novel fan configuration for distributed propulsion systems with boundary layer ingestion on an hybrid wing body airframe. Thermal Science and Engineering Progress, 18, 100515. ISSN 2451-9049.CrossRef Valencia, E., Alulema, V., Rodriguez, D., Laskaridis, P., & Roumeliotis, I. (2020). Novel fan configuration for distributed propulsion systems with boundary layer ingestion on an hybrid wing body airframe. Thermal Science and Engineering Progress, 18, 100515. ISSN 2451-9049.CrossRef
Zurück zum Zitat Wang, H., Zhou, Z., Xu, X., & Zhu, X. (2018). Influence analysis of propeller location parameters on wings using a panel/viscous vortex particle hybrid method. The Aeronautical Journal, 122(1247), 21–41.CrossRef Wang, H., Zhou, Z., Xu, X., & Zhu, X. (2018). Influence analysis of propeller location parameters on wings using a panel/viscous vortex particle hybrid method. The Aeronautical Journal, 122(1247), 21–41.CrossRef
Zurück zum Zitat Wang, K., Zhou, Z., Zhu, X., & Xu, X. (2019). Aerodynamic design of multi-propeller/wing integration at low Reynolds numbers. Aerospace Science and Technology, 84, 1–17.CrossRef Wang, K., Zhou, Z., Zhu, X., & Xu, X. (2019). Aerodynamic design of multi-propeller/wing integration at low Reynolds numbers. Aerospace Science and Technology, 84, 1–17.CrossRef
Zurück zum Zitat Zhang, J., Kang, W., & Yang, L. (2019). Aerodynamic benefits of boundary layer ingestion for distributed propulsion configuration. Aircraft Engineering and Aerospace Technology, 91(10), 1285–1294.CrossRef Zhang, J., Kang, W., & Yang, L. (2019). Aerodynamic benefits of boundary layer ingestion for distributed propulsion configuration. Aircraft Engineering and Aerospace Technology, 91(10), 1285–1294.CrossRef
Metadaten
Titel
Leading and Trailing Edge Configuration for Distributed Electric Propulsion Systems
verfasst von
Mithun Eqbal
Matthew Marino
Patrick Farley
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-33118-3_15