Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.02.2011 | Original Paper | Ausgabe 2/2011

Soft Computing 2/2011

Learning a tensor subspace for semi-supervised dimensionality reduction

Zeitschrift:
Soft Computing > Ausgabe 2/2011
Autoren:
Zhao Zhang, Ning Ye

Abstract

The high-dimensional data is frequently encountered and processed in real-world applications and unlabeled samples are readily available, but labeled or pairwise constrained ones are fairly expensive to capture. Traditionally, when a pattern itself is an n 1 × n 2 image, the image first has to be vectorized to the vector pattern in \( \Re^{{n_{1} \times n_{2} }} \) by concatenating its pixels. However, such a vector representation fails to take into account the spatial locality of pixels in the images, which are intrinsically matrices. In this paper, we propose a tensor subspace learning-based semi-supervised dimensionality reduction algorithm (TS2DR), in which an image is naturally represented as a second-order tensor in \( \Re^{{n_{1} }} \otimes \Re^{{n_{2} }} \) and domain knowledge in the forms of pairwise similarity and dissimilarity constraints is used to specify whether pairs of instances belong to the same class or different classes. TS2DR has an analytic form of the global structure preserving embedding transformation, which can be easily computed based on eigen-decomposition. We also verify the efficiency of TS2DR by conducting unbalanced data classification experiments based on the benchmark real-word databases. Numerical results show that TS2DR tends to capture the intrinsic structure characteristics of the given data and achieves better classification accuracy, while being much more efficient.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2011

Soft Computing 2/2011 Zur Ausgabe

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise