Skip to main content

2019 | OriginalPaper | Buchkapitel

7. Learning Activation Functions from Data Using Cubic Spline Interpolation

verfasst von : Simone Scardapane, Michele Scarpiniti, Danilo Comminiello, Aurelio Uncini

Erschienen in: Neural Advances in Processing Nonlinear Dynamic Signals

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neural networks require a careful design in order to perform properly on a given task. In particular, selecting a good activation function (possibly in a data-dependent fashion) is a crucial step, which remains an open problem in the research community. Despite a large amount of investigations, most current implementations simply select one fixed function from a small set of candidates, which is not adapted during training, and is shared among all neurons throughout the different layers. However, neither two of these assumptions can be supposed optimal in practice. In this paper, we present a principled way to have data-dependent adaptation of the activation functions, which is performed independently for each neuron. This is achieved by leveraging over past and present advances on cubic spline interpolation, allowing for local adaptation of the functions around their regions of use. The resulting algorithm is relatively cheap to implement, and overfitting is counterbalanced by the inclusion of a novel damping criterion, which penalizes unwanted oscillations from a predefined shape. Preliminary experimental results validate the proposal.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We note that the following treatment can be extended easily to the case of a network with more than one hidden layer. However, restricting it to a single layer allow us to keep the discussion focused on the problems/advantages arising in the use of SAFs. We leave this extension to a future work.
 
Literatur
1.
Zurück zum Zitat Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks (2014). arXiv preprint arXiv:1412.6830 Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks (2014). arXiv preprint arXiv:​1412.​6830
2.
Zurück zum Zitat Chandra, P., Singh, Y.: An activation function adapting training algorithm for sigmoidal feedforward networks. Neurocomputing 61, 429–437 (2004)CrossRef Chandra, P., Singh, Y.: An activation function adapting training algorithm for sigmoidal feedforward networks. Neurocomputing 61, 429–437 (2004)CrossRef
3.
Zurück zum Zitat Chen, C.T., Chang, W.D.: A feedforward neural network with function shape autotuning. Neural Netw. 9(4), 627–641 (1996)CrossRef Chen, C.T., Chang, W.D.: A feedforward neural network with function shape autotuning. Neural Netw. 9(4), 627–641 (1996)CrossRef
4.
Zurück zum Zitat Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010) Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
5.
Zurück zum Zitat Goh, S., Mandic, D.: Recurrent neural networks with trainable amplitude of activation functions. Neural Netw. 16(8), 1095–1100 (2003)CrossRef Goh, S., Mandic, D.: Recurrent neural networks with trainable amplitude of activation functions. Neural Netw. 16(8), 1095–1100 (2003)CrossRef
6.
Zurück zum Zitat Guarnieri, S., Piazza, F., Uncini, A.: Multilayer feedforward networks with adaptive spline activation function. IEEE Trans. Neural Netw. 10(3), 672–683 (1999)CrossRef Guarnieri, S., Piazza, F., Uncini, A.: Multilayer feedforward networks with adaptive spline activation function. IEEE Trans. Neural Netw. 10(3), 672–683 (1999)CrossRef
7.
Zurück zum Zitat Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education (2009) Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education (2009)
8.
Zurück zum Zitat Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International Conference for Learning Representations (2015). arXiv preprint arXiv:1412.6980 Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International Conference for Learning Representations (2015). arXiv preprint arXiv:​1412.​6980
10.
Zurück zum Zitat Ma, L., Khorasani, K.: Constructive feedforward neural networks using hermite polynomial activation functions. IEEE Trans. Neural Netw. 16(4), 821–833 (2005)CrossRef Ma, L., Khorasani, K.: Constructive feedforward neural networks using hermite polynomial activation functions. IEEE Trans. Neural Netw. 16(4), 821–833 (2005)CrossRef
11.
Zurück zum Zitat Piazza, F., Uncini, A., Zenobi, M.: Artificial neural networks with adaptive polynomial activation function. In: International Joint Conference on Neural Networks, vol. 2, pp. II–343. IEEE/INNS (1992) Piazza, F., Uncini, A., Zenobi, M.: Artificial neural networks with adaptive polynomial activation function. In: International Joint Conference on Neural Networks, vol. 2, pp. II–343. IEEE/INNS (1992)
12.
Zurück zum Zitat Rasmussen, C.: Gaussian Processes for Machine Learning. MIT Press (2006) Rasmussen, C.: Gaussian Processes for Machine Learning. MIT Press (2006)
13.
Zurück zum Zitat Scarpiniti, M., Comminiello, D., Parisi, R., Uncini, A.: Nonlinear spline adaptive filtering. Signal Process. 93(4), 772–783 (2013)CrossRef Scarpiniti, M., Comminiello, D., Parisi, R., Uncini, A.: Nonlinear spline adaptive filtering. Signal Process. 93(4), 772–783 (2013)CrossRef
14.
Zurück zum Zitat Scarpiniti, M., Comminiello, D., Scarano, G., Parisi, R., Uncini, A.: Steady-state performance of spline adaptive filters. IEEE Trans. Signal Process. 64(4), 816–828 (2016)MathSciNetCrossRef Scarpiniti, M., Comminiello, D., Scarano, G., Parisi, R., Uncini, A.: Steady-state performance of spline adaptive filters. IEEE Trans. Signal Process. 64(4), 816–828 (2016)MathSciNetCrossRef
15.
Zurück zum Zitat Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRef Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRef
16.
Zurück zum Zitat Trentin, E.: Networks with trainable amplitude of activation functions. Neural Netw. 14(4), 471–493 (2001)CrossRef Trentin, E.: Networks with trainable amplitude of activation functions. Neural Netw. 14(4), 471–493 (2001)CrossRef
17.
Zurück zum Zitat Vecci, L., Piazza, F., Uncini, A.: Learning and approximation capabilities of adaptive spline activation function neural networks. Neural Netw. 11(2), 259–270 (1998)CrossRef Vecci, L., Piazza, F., Uncini, A.: Learning and approximation capabilities of adaptive spline activation function neural networks. Neural Netw. 11(2), 259–270 (1998)CrossRef
18.
Zurück zum Zitat Wahba, G.: Spline Models for Observational Data. SIAM (1990) Wahba, G.: Spline Models for Observational Data. SIAM (1990)
19.
Zurück zum Zitat Zhang, M., Xu, S., Fulcher, J.: Neuron-adaptive higher order neural-network models for automated financial data modeling. IEEE Trans. Neural Netw. 13(1), 188–204 (2002)CrossRef Zhang, M., Xu, S., Fulcher, J.: Neuron-adaptive higher order neural-network models for automated financial data modeling. IEEE Trans. Neural Netw. 13(1), 188–204 (2002)CrossRef
Metadaten
Titel
Learning Activation Functions from Data Using Cubic Spline Interpolation
verfasst von
Simone Scardapane
Michele Scarpiniti
Danilo Comminiello
Aurelio Uncini
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95098-3_7