Skip to main content

2024 | OriginalPaper | Buchkapitel

Learning Approaches for Security and Privacy in Internet of Things

verfasst von : T. Daniya, M. Geetha, Velliangiri Sarveshwaran, Ch. Madhu Babu

Erschienen in: Modern Approaches in IoT and Machine Learning for Cyber Security

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Das Kapitel geht auf die vielfältigen Herausforderungen der Cybersicherheit im Internet der Dinge (IoT) ein und betont die Notwendigkeit robuster Sicherheitsmaßnahmen angesichts der Verbreitung von IoT-Geräten. Darin werden die Schwachstellen von IoT-Netzwerken gegenüber verschiedenen Cyber-Angriffen wie Denial of Service (DoS) und Distributed Denial of Service (DDoS) sowie die entscheidende Rolle des maschinellen Lernens bei der Entwicklung fortschrittlicher Systeme zur Erkennung von Eindringlingen diskutiert. Das Kapitel untersucht auch die Komplexität menschlicher Beteiligung an Cyber-Physical-Human Systems (CPHS) und die Herausforderungen bei der Modellierung menschlichen Verhaltens zu Sicherheitszwecken. Darüber hinaus werden maschinelle Lernalgorithmen und ihre Anwendungen zur Erkennung und Abmilderung von Cyberangriffen überprüft, wobei innovative Ansätze wie das IntruDTree-Modell und der Einsatz neuronaler Netzwerke zur Malware-Erkennung hervorgehoben werden. Das Kapitel schließt mit einem Vergleich verschiedener maschineller Lerntechniken für Cybersicherheit und Datenschutzauthentifizierung und skizziert zukünftige Forschungsrichtungen, um den Bereich der IoT-Sicherheit voranzutreiben.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Kimani, V. Oduol, K. Langat, Cyber security challenges for IoT-based smart grid networks. Int. J. Crit. Infrastruct. Prot. 25, 36–49 (2019)CrossRef K. Kimani, V. Oduol, K. Langat, Cyber security challenges for IoT-based smart grid networks. Int. J. Crit. Infrastruct. Prot. 25, 36–49 (2019)CrossRef
2.
Zurück zum Zitat M.M. Rana, R. Bo, IoT-based cyber-physical communication architecture: Challenges and research directions. IET Cyber-Physical Systems: Theory & Applications 5(1), 25–30 (2020)CrossRef M.M. Rana, R. Bo, IoT-based cyber-physical communication architecture: Challenges and research directions. IET Cyber-Physical Systems: Theory & Applications 5(1), 25–30 (2020)CrossRef
3.
Zurück zum Zitat S. Tanwar, S. Tyagi, S. Kumar, The role of internet of things and smart grid for the development of a smart city, in Intelligent Communication and Computational Technologies, (Springer, Singapore, 2018), pp. 23–33CrossRef S. Tanwar, S. Tyagi, S. Kumar, The role of internet of things and smart grid for the development of a smart city, in Intelligent Communication and Computational Technologies, (Springer, Singapore, 2018), pp. 23–33CrossRef
4.
Zurück zum Zitat P. Radanliev, D. De Roure, S. Cannady, R.M. Montalvo, R. Nicolescu, M. Huth, Economic impact of IoT cyber risk-analysing past and present to predict the future developments in IoT risk analysis and IoT cyber insurance (2018) P. Radanliev, D. De Roure, S. Cannady, R.M. Montalvo, R. Nicolescu, M. Huth, Economic impact of IoT cyber risk-analysing past and present to predict the future developments in IoT risk analysis and IoT cyber insurance (2018)
5.
Zurück zum Zitat A. Jain, T. Singh, Security challenges and solutions of IoT ecosystem, in Information and Communication Technology for Sustainable Development, (Springer, Singapore, 2020), pp. 259–270CrossRef A. Jain, T. Singh, Security challenges and solutions of IoT ecosystem, in Information and Communication Technology for Sustainable Development, (Springer, Singapore, 2020), pp. 259–270CrossRef
6.
Zurück zum Zitat S. Tweneboah-Koduah, K.E. Skouby, R. Tadayoni, Cyber security threats to IoT applications and service domains. Wirel. Pers. Commun. 95(1), 169–185 (2017)CrossRef S. Tweneboah-Koduah, K.E. Skouby, R. Tadayoni, Cyber security threats to IoT applications and service domains. Wirel. Pers. Commun. 95(1), 169–185 (2017)CrossRef
7.
Zurück zum Zitat S.K. Sowe, E. Simmon, K. Zettsu, F. de Vaulx, I. Bojanova, Cyber-physical-human systems: Putting people in the loop. IT Prof 18(1), 10–13 (2016)CrossRef S.K. Sowe, E. Simmon, K. Zettsu, F. de Vaulx, I. Bojanova, Cyber-physical-human systems: Putting people in the loop. IT Prof 18(1), 10–13 (2016)CrossRef
8.
Zurück zum Zitat S.A. Kumar, B. Bhargava, R. Macêdo, G. Mani, Securing iot-based cyber-physical human systems against collaborative attacks, in 2017 IEEE International Congress on Internet of Things (ICIOT), (IEEE, 2017, June), pp. 9–16CrossRef S.A. Kumar, B. Bhargava, R. Macêdo, G. Mani, Securing iot-based cyber-physical human systems against collaborative attacks, in 2017 IEEE International Congress on Internet of Things (ICIOT), (IEEE, 2017, June), pp. 9–16CrossRef
9.
Zurück zum Zitat Y. Jiang, S. Yin, O. Kaynak, Data-driven monitoring and safety control of industrial cyber-physical systems: Basics and beyond. IEEE Access 6, 47374–47384 (2018)CrossRef Y. Jiang, S. Yin, O. Kaynak, Data-driven monitoring and safety control of industrial cyber-physical systems: Basics and beyond. IEEE Access 6, 47374–47384 (2018)CrossRef
10.
Zurück zum Zitat K.M. Renuka, S. Kumari, D. Zhao, L. Li, Design of a secure password-based authentication scheme for M2M networks in IoT enabled cyber-physical systems. IEEE Access 7, 51014–51027 (2019)CrossRef K.M. Renuka, S. Kumari, D. Zhao, L. Li, Design of a secure password-based authentication scheme for M2M networks in IoT enabled cyber-physical systems. IEEE Access 7, 51014–51027 (2019)CrossRef
11.
Zurück zum Zitat B. Ali, A.I. Awad, Cyber and physical security vulnerability assessment for IoT-based smart homes. Sensors 18(3), 817 (2018)CrossRef B. Ali, A.I. Awad, Cyber and physical security vulnerability assessment for IoT-based smart homes. Sensors 18(3), 817 (2018)CrossRef
12.
Zurück zum Zitat P. Radanliev, D.C. De Roure, R. Nicolescu, M. Huth, R.M. Montalvo, S. Cannady, P. Burnap, Future developments in cyber risk assessment for the internet of things. Comput. Ind. 102, 14–22 (2018)CrossRef P. Radanliev, D.C. De Roure, R. Nicolescu, M. Huth, R.M. Montalvo, S. Cannady, P. Burnap, Future developments in cyber risk assessment for the internet of things. Comput. Ind. 102, 14–22 (2018)CrossRef
13.
Zurück zum Zitat P. Radanliev, D. De Roure, S. Cannady, R. Mantilla Montalvo, R. Nicolescu, M. Huth, Analysing IoT cyber risk for estimating IoT cyber insurance, in Living in the Internet of Things: Cybersecurity of the IoT-2018. IET Conference Proceedings, (The Institution of Engineering and Technology, London, 2018) P. Radanliev, D. De Roure, S. Cannady, R. Mantilla Montalvo, R. Nicolescu, M. Huth, Analysing IoT cyber risk for estimating IoT cyber insurance, in Living in the Internet of Things: Cybersecurity of the IoT-2018. IET Conference Proceedings, (The Institution of Engineering and Technology, London, 2018)
14.
Zurück zum Zitat S. Velliangiri, K.K. Kasaraneni, Machine Learning and Deep Learning in cyber security for IoT, in ICDSMLA 2019, (Springer, Singapore, 2020), pp. 975–981CrossRef S. Velliangiri, K.K. Kasaraneni, Machine Learning and Deep Learning in cyber security for IoT, in ICDSMLA 2019, (Springer, Singapore, 2020), pp. 975–981CrossRef
15.
Zurück zum Zitat K. Kandasamy, S. Srinivas, K. Achuthan, V.P. Rangan, IoT cyber risk: A holistic analysis of cyber risk assessment frameworks, risk vectors, and risk ranking process. EURASIP J. Inf. Secur. 2020, 1–18 (2020) K. Kandasamy, S. Srinivas, K. Achuthan, V.P. Rangan, IoT cyber risk: A holistic analysis of cyber risk assessment frameworks, risk vectors, and risk ranking process. EURASIP J. Inf. Secur. 2020, 1–18 (2020)
16.
Zurück zum Zitat I.H. Sarker, Y.B. Abushark, F. Alsolami, A.I. Khan, Intrudtree: A machine learning based cyber security intrusion detection model. Symmetry 12(5), 754 (2020)CrossRef I.H. Sarker, Y.B. Abushark, F. Alsolami, A.I. Khan, Intrudtree: A machine learning based cyber security intrusion detection model. Symmetry 12(5), 754 (2020)CrossRef
17.
Zurück zum Zitat I.H. Sarker, CyberLearning: Effectiveness analysis of machine learning security modeling to detect cyber-anomalies and multi-attacks. Internet of Things 14, 100393 (2021)CrossRef I.H. Sarker, CyberLearning: Effectiveness analysis of machine learning security modeling to detect cyber-anomalies and multi-attacks. Internet of Things 14, 100393 (2021)CrossRef
18.
Zurück zum Zitat N.F. Syed, Z. Baig, A. Ibrahim, C. Valli, Denial of service attack detection through machine learning for the IoT. J. Inf. Telecommun 4(4), 482–503 (2020) N.F. Syed, Z. Baig, A. Ibrahim, C. Valli, Denial of service attack detection through machine learning for the IoT. J. Inf. Telecommun 4(4), 482–503 (2020)
19.
Zurück zum Zitat R. Damaševičius, A. Venčkauskas, J. Toldinas, Š. Grigaliūnas, Ensemble-based classification using neural networks and machine learning models for windows PE malware detection. Electronics 10(4), 485 (2021)CrossRef R. Damaševičius, A. Venčkauskas, J. Toldinas, Š. Grigaliūnas, Ensemble-based classification using neural networks and machine learning models for windows PE malware detection. Electronics 10(4), 485 (2021)CrossRef
20.
Zurück zum Zitat V.H. Subburaj, B.A. Pham, Cybersecurity: Using Machine Learning Algorithms to Detect SQL Injection Attacks (2020) V.H. Subburaj, B.A. Pham, Cybersecurity: Using Machine Learning Algorithms to Detect SQL Injection Attacks (2020)
21.
Zurück zum Zitat M. Shafiq, Z. Tian, Y. Sun, X. Du, M. Guizani, Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city. Futur. Gener. Comput. Syst. 107, 433–442 (2020)CrossRef M. Shafiq, Z. Tian, Y. Sun, X. Du, M. Guizani, Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city. Futur. Gener. Comput. Syst. 107, 433–442 (2020)CrossRef
22.
Zurück zum Zitat Z. Katzir, Y. Elovici, Quantifying the resilience of machine learning classifiers used for cyber security. Expert Syst. Appl. 92, 419–429 (2018)CrossRef Z. Katzir, Y. Elovici, Quantifying the resilience of machine learning classifiers used for cyber security. Expert Syst. Appl. 92, 419–429 (2018)CrossRef
23.
Zurück zum Zitat E. Anthi, L. Williams, M. Rhode, P. Burnap, A. Wedgbury, Adversarial attacks on machine learning cybersecurity defences in industrial control systems. J. Inf. Secur. Appl. 58, 102717 (2021) E. Anthi, L. Williams, M. Rhode, P. Burnap, A. Wedgbury, Adversarial attacks on machine learning cybersecurity defences in industrial control systems. J. Inf. Secur. Appl. 58, 102717 (2021)
24.
Zurück zum Zitat A. Bilen, A.B. Özer, Cyber-attack method and perpetrator prediction using machine learning algorithms. PeerJ Comput. Sci 7, e475 (2021)CrossRef A. Bilen, A.B. Özer, Cyber-attack method and perpetrator prediction using machine learning algorithms. PeerJ Comput. Sci 7, e475 (2021)CrossRef
25.
Zurück zum Zitat V.K. Singh, M. Govindarasu, A cyber-physical anomaly detection for wide-area protection using machine learning. IEEE Transactions on Smart Grid. PP, 1 (2021) V.K. Singh, M. Govindarasu, A cyber-physical anomaly detection for wide-area protection using machine learning. IEEE Transactions on Smart Grid. PP, 1 (2021)
26.
Zurück zum Zitat I. Tariq, M.A. Sindhu, R.A. Abbasi, A.S. Khattak, O. Maqbool, G.F. Siddiqui, Resolving cross-site scripting attacks through genetic algorithm and reinforcement learning. Expert Syst. Appl. 168, 114386 (2021)CrossRef I. Tariq, M.A. Sindhu, R.A. Abbasi, A.S. Khattak, O. Maqbool, G.F. Siddiqui, Resolving cross-site scripting attacks through genetic algorithm and reinforcement learning. Expert Syst. Appl. 168, 114386 (2021)CrossRef
27.
Zurück zum Zitat M. Ghiasi, M. Dehghani, T. Niknam, A. Kavousi-Fard, P. Siano, H.H. Alhelou, Cyber-attack detection and cyber-security enhancement in smart DC-microgrid based on blockchain technology and Hilbert Huang transform. IEEE Access 9, 29429–29440 (2021)CrossRef M. Ghiasi, M. Dehghani, T. Niknam, A. Kavousi-Fard, P. Siano, H.H. Alhelou, Cyber-attack detection and cyber-security enhancement in smart DC-microgrid based on blockchain technology and Hilbert Huang transform. IEEE Access 9, 29429–29440 (2021)CrossRef
28.
Zurück zum Zitat Q. Li, L. Zhang, R. Zhou, Y. Xia, W. Gao, Y. Tai, Machine learning-based stealing attack of the temperature monitoring system for the energy Internet of Things. Secur. Commun. Netw 2021, 1 (2021) Q. Li, L. Zhang, R. Zhou, Y. Xia, W. Gao, Y. Tai, Machine learning-based stealing attack of the temperature monitoring system for the energy Internet of Things. Secur. Commun. Netw 2021, 1 (2021)
29.
Zurück zum Zitat P. Kumar, G.P. Gupta, R. Tripathi, TP2SF: A trustworthy privacy-preserving secured framework for sustainable smart cities by leveraging blockchain and machine learning. J. Syst. Archit. 115, 101954 (2021)CrossRef P. Kumar, G.P. Gupta, R. Tripathi, TP2SF: A trustworthy privacy-preserving secured framework for sustainable smart cities by leveraging blockchain and machine learning. J. Syst. Archit. 115, 101954 (2021)CrossRef
30.
Zurück zum Zitat S. Zhu, V. Saravanan, B. Muthu, Achieving data security and privacy across healthcare applications using cyber security mechanisms. Electron. Libr. 38, 979 (2020)CrossRef S. Zhu, V. Saravanan, B. Muthu, Achieving data security and privacy across healthcare applications using cyber security mechanisms. Electron. Libr. 38, 979 (2020)CrossRef
31.
Zurück zum Zitat S. Liu, S. You, H. Yin, Z. Lin, Y. Liu, W. Yao, L. Sundaresh, Model-free data authentication for cyber security in power systems. IEEE Trans. Smart Grid 11(5), 4565–4568 (2020)CrossRef S. Liu, S. You, H. Yin, Z. Lin, Y. Liu, W. Yao, L. Sundaresh, Model-free data authentication for cyber security in power systems. IEEE Trans. Smart Grid 11(5), 4565–4568 (2020)CrossRef
32.
Zurück zum Zitat S. Velliangiri, An enhanced multimedia video surveillance security using wavelet encryption framework. J. Mobile Multimed 15(3), 239–254 (2020) S. Velliangiri, An enhanced multimedia video surveillance security using wavelet encryption framework. J. Mobile Multimed 15(3), 239–254 (2020)
33.
Zurück zum Zitat H. Karimipour, A. Dehghantanha, R.M. Parizi, K.K.R. Choo, H. Leung, A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access 7, 80778–80788 (2019)CrossRef H. Karimipour, A. Dehghantanha, R.M. Parizi, K.K.R. Choo, H. Leung, A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access 7, 80778–80788 (2019)CrossRef
34.
Zurück zum Zitat S. Velliangira, J. Premalata, A novel forgery detection in image frames of the videos using enhanced convolutional neural network in face images. Comput. Model. Eng. Sci 125(2), 625–645 (2020) S. Velliangira, J. Premalata, A novel forgery detection in image frames of the videos using enhanced convolutional neural network in face images. Comput. Model. Eng. Sci 125(2), 625–645 (2020)
35.
Zurück zum Zitat M. Thakong, S. Phimoltares, S. Jaiyen, C. Lursinsap, One-pass-throw-away learning for cybersecurity in streaming non-stationary environments by dynamic stratum network. PLoS One 13(9), e0202937 (2018)CrossRef M. Thakong, S. Phimoltares, S. Jaiyen, C. Lursinsap, One-pass-throw-away learning for cybersecurity in streaming non-stationary environments by dynamic stratum network. PLoS One 13(9), e0202937 (2018)CrossRef
36.
Zurück zum Zitat M. Kalinin, V. Krundyshev, P. Zegzhda, Cybersecurity risk assessment in Smart City infrastructures. Mach. Des. 9(4), 78 (2021) M. Kalinin, V. Krundyshev, P. Zegzhda, Cybersecurity risk assessment in Smart City infrastructures. Mach. Des. 9(4), 78 (2021)
37.
Zurück zum Zitat W. Serrano, The blockchain random neural network for cybersecure IoT and 5G infrastructure in smart cities. J. Netw. Comput. Appl. 175, 102909 (2021)CrossRef W. Serrano, The blockchain random neural network for cybersecure IoT and 5G infrastructure in smart cities. J. Netw. Comput. Appl. 175, 102909 (2021)CrossRef
38.
Zurück zum Zitat J. Zhang, Y. Zhao, J. Wang, B. Chen, FedMEC: Improving efficiency of differentially private federated learning via mobile edge computing. Mobile Netw. Appl 25(6), 2421–2433 (2020)CrossRef J. Zhang, Y. Zhao, J. Wang, B. Chen, FedMEC: Improving efficiency of differentially private federated learning via mobile edge computing. Mobile Netw. Appl 25(6), 2421–2433 (2020)CrossRef
39.
Zurück zum Zitat S. Latif, Z. Idrees, J. Ahmad, L. Zheng, Z. Zou, A blockchain-based architecture for secure and trustworthy operations in the industrial Internet of Things. J. Ind. Inf. Integr. 21, 100190 (2021) S. Latif, Z. Idrees, J. Ahmad, L. Zheng, Z. Zou, A blockchain-based architecture for secure and trustworthy operations in the industrial Internet of Things. J. Ind. Inf. Integr. 21, 100190 (2021)
40.
Zurück zum Zitat W. Abramson, A.J. Hall, P. Papadopoulos, N. Pitropakis, W.J. Buchanan, A distributed trust framework for privacy-preserving machine learning, in International Conference on Trust and Privacy in Digital Business, (Springer, Cham, 2020, Sept), pp. 205–220 W. Abramson, A.J. Hall, P. Papadopoulos, N. Pitropakis, W.J. Buchanan, A distributed trust framework for privacy-preserving machine learning, in International Conference on Trust and Privacy in Digital Business, (Springer, Cham, 2020, Sept), pp. 205–220
Metadaten
Titel
Learning Approaches for Security and Privacy in Internet of Things
verfasst von
T. Daniya
M. Geetha
Velliangiri Sarveshwaran
Ch. Madhu Babu
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-09955-7_4