Skip to main content

2014 | OriginalPaper | Buchkapitel

Learning Effective Models of Emotions from Physiological Signals: The Seven Principles

verfasst von : Rui Henriques, Ana Paiva

Erschienen in: Physiological Computing Systems

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Learning effective models from emotion-elicited physiological responses for the classification and description of emotions is increasingly required to derive accurate analysis from affective interactions. Despite the relevance of this task, there is still lacking an integrative view of existing contributions. Additionally, there is no agreement on how to deal with the differences of physiological responses across individuals, and on how to learn from flexible sequential behavior and subtle but meaningful spontaneous variations of the signals. In this work, we rely on empirical evidence to define seven principles for a robust mining physiological signals to recognize and characterize affective states. These principles compose a coherent and complete roadmap for the development of new methods for the analysis of physiological signals. In particular, these principles address the current over-emphasis on feature-based models by including critical generative views derived from different streams of research, including multivariate data analysis and temporal data mining. Additionally, we explore how to use background knowledge related with the experimental setting and psychophysiological profiles from users to shape the learning of emotion-centered models. A methodology that integrates these principles is proposed and validated using signals collected during human-to-human and human-to-robot affective interactions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Illustrative applications include: measuring human interaction with artificial agents, assisting clinical research (emotion-centered understanding of addiction, affect dysregulation, alcoholism, anxiety, autism, attention deficit, depression, drug reaction, epilepsy, menopause, locked-in syndrome, pain management, phobias and desensitization therapy, psychiatric counseling, schizophrenia, sleep disorders, and sociopathy), studying the effect of body posture and exercises in well-being, disclosing responses to marketing and suggestive interfaces, reducing conflict in schools and prisons through the early detection of hampering behavior, fostering education by relying on emotion-centered feedback to escalate behavior and increase motivation, development of (pedagogic) games, and self-awareness enhancement.
 
2
Learning descriptive models of emotions from labeled signals should satisfy four major requirements: flexibility (descriptive models cope with the complex and variable physiological expression of emotions within and among individuals), discriminative power (descriptive models capture and enhance the different physiological responses among emotions at an individual and group level), completeness (descriptive models contain all of the discriminative properties and, when the reconstitution of the signal behavior is relevant, of flexible sequential abstractions), and usability (descriptive models are compact and the abstractions of physiological responses are easily interpretable).
 
5
scripts, data and statistical sheets available in http://​web.​ist.​utl.​pt/​rmch/​research/​software/​eda.
 
Literatur
1.
Zurück zum Zitat Andreassi, J.: Psychophysiology: Human Behavior and Physiological Response. Lawrence Erlbaum, Mahwah (2007) Andreassi, J.: Psychophysiology: Human Behavior and Physiological Response. Lawrence Erlbaum, Mahwah (2007)
2.
Zurück zum Zitat Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)MATH Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)MATH
3.
Zurück zum Zitat Bos, D.O.: EEG-based emotion recognition the influence of visual and auditory stimuli. Emotion 57(7), 1798–1806 (2006) Bos, D.O.: EEG-based emotion recognition the influence of visual and auditory stimuli. Emotion 57(7), 1798–1806 (2006)
4.
Zurück zum Zitat Cacioppo, J., Tassinary, L., Berntson, G.: Handbook of Psychophysiology. Cambridge University Press, New York (2007)CrossRef Cacioppo, J., Tassinary, L., Berntson, G.: Handbook of Psychophysiology. Cambridge University Press, New York (2007)CrossRef
5.
Zurück zum Zitat Chang, C., Zheng, J., Wang, C.: Based on support vector regression for emotion recognition using physiological signals. In: IJCNN, pp. 1–7 (2010) Chang, C., Zheng, J., Wang, C.: Based on support vector regression for emotion recognition using physiological signals. In: IJCNN, pp. 1–7 (2010)
6.
Zurück zum Zitat Ekman, P., Friesen, W.V., O’Sullivan, M., Chan, A., Diacoyanni-Tarlatzis, I., Heider, K., Krause, R., LeCompte, W.A., Pitcairn, T., Ricci-Bitti, P.E., Scherer, K.R., Tomita, M., Tzavaras, A.: Universals and cultural differences in the judgments of facial expressions of emotion. J. Pers. Soc. Psychol. 53, 712–717 (1988)CrossRef Ekman, P., Friesen, W.V., O’Sullivan, M., Chan, A., Diacoyanni-Tarlatzis, I., Heider, K., Krause, R., LeCompte, W.A., Pitcairn, T., Ricci-Bitti, P.E., Scherer, K.R., Tomita, M., Tzavaras, A.: Universals and cultural differences in the judgments of facial expressions of emotion. J. Pers. Soc. Psychol. 53, 712–717 (1988)CrossRef
7.
Zurück zum Zitat Haag, A., Goronzy, S., Schaich, P., Williams, J.: Emotion recognition using bio-sensors: first steps towards an automatic system. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 36–48. Springer, Heidelberg (2004)CrossRef Haag, A., Goronzy, S., Schaich, P., Williams, J.: Emotion recognition using bio-sensors: first steps towards an automatic system. In: André, E., Dybkjær, L., Minker, W., Heisterkamp, P. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 36–48. Springer, Heidelberg (2004)CrossRef
8.
Zurück zum Zitat Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRef Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRef
9.
Zurück zum Zitat Henriques, R., Paiva, A.: Descriptive models of emotion: learning useful abstractions from physiological responses during affective interactions. In: PhyCS Special Session on Recognition of Affect Signals from PhysiologIcal Data for Social Robots (OASIS’14). SCITEPRESS, Lisbon (2014) Henriques, R., Paiva, A.: Descriptive models of emotion: learning useful abstractions from physiological responses during affective interactions. In: PhyCS Special Session on Recognition of Affect Signals from PhysiologIcal Data for Social Robots (OASIS’14). SCITEPRESS, Lisbon (2014)
10.
Zurück zum Zitat Henriques, R., Paiva, A.: Seven principles to mine flexible behavior from physiological signals for effective emotion recognition and description in affective interactions. In: Physiological Computing Systems (PhyCS’14). SCITEPRESS, Lisbon (2014) Henriques, R., Paiva, A.: Seven principles to mine flexible behavior from physiological signals for effective emotion recognition and description in affective interactions. In: Physiological Computing Systems (PhyCS’14). SCITEPRESS, Lisbon (2014)
11.
Zurück zum Zitat Henriques, R., Paiva, A., Antunes, C.: On the need of new methods to mine electrodermal activity in emotion-centered studies. In: Cao, L., Zeng, Y., Symeonidis, A.L., Gorodetsky, V.I., Yu, P.S., Singh, M.P. (eds.) ADMI. LNCS (LNAI), vol. 7607, pp. 203–215. Springer, Heidelberg (2013)CrossRef Henriques, R., Paiva, A., Antunes, C.: On the need of new methods to mine electrodermal activity in emotion-centered studies. In: Cao, L., Zeng, Y., Symeonidis, A.L., Gorodetsky, V.I., Yu, P.S., Singh, M.P. (eds.) ADMI. LNCS (LNAI), vol. 7607, pp. 203–215. Springer, Heidelberg (2013)CrossRef
12.
Zurück zum Zitat Jerritta, S., Murugappan, M., Nagarajan, R., Wan, K.: Physiological signals based human emotion recognition: a review. In: IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA) 2011, pp. 410–415 (2011) Jerritta, S., Murugappan, M., Nagarajan, R., Wan, K.: Physiological signals based human emotion recognition: a review. In: IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA) 2011, pp. 410–415 (2011)
13.
Zurück zum Zitat Katsis, C., Katertsidis, N., Ganiatsas, G., Fotiadis, D.: Toward emotion recognition in car-racing drivers: a biosignal processing approach. IEEE Trans. Syst. Man Cybern. Syst. Hum. 38(3), 502–512 (2008)CrossRef Katsis, C., Katertsidis, N., Ganiatsas, G., Fotiadis, D.: Toward emotion recognition in car-racing drivers: a biosignal processing approach. IEEE Trans. Syst. Man Cybern. Syst. Hum. 38(3), 502–512 (2008)CrossRef
14.
Zurück zum Zitat Kulic, D., Croft, E.A.: Affective state estimation for human-robot interaction. Trans. Rob. 23(5), 991–1000 (2007)CrossRef Kulic, D., Croft, E.A.: Affective state estimation for human-robot interaction. Trans. Rob. 23(5), 991–1000 (2007)CrossRef
15.
Zurück zum Zitat Lang, P.: The emotion probe: studies of motivation and attention. Am. Psychol. 50, 372–372 (1995)CrossRef Lang, P.: The emotion probe: studies of motivation and attention. Am. Psychol. 50, 372–372 (1995)CrossRef
16.
Zurück zum Zitat Leite, I., Henriques, R., Martinho, C., Paiva, A.: Sensors in the wild: exploring electrodermal activity in child-robot interaction. In: HRI, pp. 41–48. ACM/IEEE (2013) Leite, I., Henriques, R., Martinho, C., Paiva, A.: Sensors in the wild: exploring electrodermal activity in child-robot interaction. In: HRI, pp. 41–48. ACM/IEEE (2013)
17.
Zurück zum Zitat Lessard, C.S.: Signal Processing of Random Physiological Signals. Synthesis Lectures on Biomedical Engineering. Morgan and Claypool Publishers, San Rafael (2006) Lessard, C.S.: Signal Processing of Random Physiological Signals. Synthesis Lectures on Biomedical Engineering. Morgan and Claypool Publishers, San Rafael (2006)
18.
Zurück zum Zitat Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: ACM SIGMOD Workshop on DMKD, pp. 2–11. ACM, New York (2003) Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: ACM SIGMOD Workshop on DMKD, pp. 2–11. ACM, New York (2003)
19.
Zurück zum Zitat Lin, J., Keogh, E.J., Lonardi, S., Chiu, B.Y.: A symbolic representation of time series, with implications for streaming algorithms. In: Zaki, M.J., Aggarwal, C.C. (eds.) DMKD, pp. 2–11. ACM (2003) Lin, J., Keogh, E.J., Lonardi, S., Chiu, B.Y.: A symbolic representation of time series, with implications for streaming algorithms. In: Zaki, M.J., Aggarwal, C.C. (eds.) DMKD, pp. 2–11. ACM (2003)
20.
Zurück zum Zitat Maaoui, C., Pruski, A., Abdat, F.: Emotion recognition for human-machine communication. In: IROS, pp. 1210–1215. IEEE/RSJ (2008) Maaoui, C., Pruski, A., Abdat, F.: Emotion recognition for human-machine communication. In: IROS, pp. 1210–1215. IEEE/RSJ (2008)
21.
Zurück zum Zitat Mitsa, T.: Temporal data mining. In: DMKD. Chapman & Hall/CRC (2009) Mitsa, T.: Temporal data mining. In: DMKD. Chapman & Hall/CRC (2009)
22.
Zurück zum Zitat Murphy, K.: Dynamic Bayesian networks: representation, inference and learning. Ph.D. thesis, UC Berkeley, CS Division (2002) Murphy, K.: Dynamic Bayesian networks: representation, inference and learning. Ph.D. thesis, UC Berkeley, CS Division (2002)
23.
Zurück zum Zitat Oatley, K., Keltner, D., Jenkins, J.M.: Understanding Emotions. Blackwell, Cambridge (2006) Oatley, K., Keltner, D., Jenkins, J.M.: Understanding Emotions. Blackwell, Cambridge (2006)
24.
Zurück zum Zitat Petrantonakis, P., Hadjileontiadis, L.: Emotion recognition from EEG using higher order crossings. TITB 14(2), 186–197 (2010) Petrantonakis, P., Hadjileontiadis, L.: Emotion recognition from EEG using higher order crossings. TITB 14(2), 186–197 (2010)
25.
Zurück zum Zitat Picard, R.W.: Affective computing: challenges. Int. J. Hum. Comput. Stud. 59(1–2), 55–64 (2003)CrossRef Picard, R.W.: Affective computing: challenges. Int. J. Hum. Comput. Stud. 59(1–2), 55–64 (2003)CrossRef
26.
Zurück zum Zitat Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)CrossRef Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)CrossRef
27.
Zurück zum Zitat Rani, P., Liu, C., Sarkar, N., Vanman, E.: An empirical study of machine learning techniques for affect recognition in human-robot interaction. Pattern Anal. Appl. 9(1), 58–69 (2006)CrossRef Rani, P., Liu, C., Sarkar, N., Vanman, E.: An empirical study of machine learning techniques for affect recognition in human-robot interaction. Pattern Anal. Appl. 9(1), 58–69 (2006)CrossRef
28.
Zurück zum Zitat Rigas, G., Katsis, C.D., Ganiatsas, G., Fotiadis, D.I.: A user independent, biosignal based, emotion recognition method. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 314–318. Springer, Heidelberg (2007)CrossRef Rigas, G., Katsis, C.D., Ganiatsas, G., Fotiadis, D.I.: A user independent, biosignal based, emotion recognition method. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 314–318. Springer, Heidelberg (2007)CrossRef
29.
Zurück zum Zitat Villon, O., Lisetti, C.: Toward recognizing individual’s subjective emotion from physiological signals in practical application. In: Computer-Based Medical Systems, pp. 357–362 (2007) Villon, O., Lisetti, C.: Toward recognizing individual’s subjective emotion from physiological signals in practical application. In: Computer-Based Medical Systems, pp. 357–362 (2007)
30.
Zurück zum Zitat Vyzas, E.: Recognition of emotional and cognitive states using physiological data. Master’s thesis, MIT (1999) Vyzas, E.: Recognition of emotional and cognitive states using physiological data. Master’s thesis, MIT (1999)
31.
Zurück zum Zitat Wagner, J., Kim, J., Andre, E.: From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classification. In: ICME, pp. 940–943. IEEE (2005) Wagner, J., Kim, J., Andre, E.: From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classification. In: ICME, pp. 940–943. IEEE (2005)
32.
Zurück zum Zitat Wu, C.K., Chung, P.C., Wang, C.J.: Extracting coherent emotion elicited segments from physiological signals. In: WACI, pp. 1–6. IEEE (2011) Wu, C.K., Chung, P.C., Wang, C.J.: Extracting coherent emotion elicited segments from physiological signals. In: WACI, pp. 1–6. IEEE (2011)
Metadaten
Titel
Learning Effective Models of Emotions from Physiological Signals: The Seven Principles
verfasst von
Rui Henriques
Ana Paiva
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-45686-6_9