Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Ausgabe 3/2015

Neural Processing Letters 3/2015

Learning Imbalanced Classifiers Locally and Globally with One-Side Probability Machine

Zeitschrift:
Neural Processing Letters > Ausgabe 3/2015
Autoren:
Kaizhu Huang, Rui Zhang, Xu-Cheng Yin

Abstract

We consider the imbalanced learning problem, where the data associated with one class are far fewer than those associated with the other class. Current imbalanced learning methods often handle this problem by adapting certain intermediate parameters so as to impose a bias on the minority data. However, most of these methods are in rigorous and need to adapt those factors via the trial-and-error procedure. Recently, a new model called Biased Minimax Probability Machine (BMPM) presents a rigorous and systematic work and has demonstrated very promising performance on imbalance learning. Despite its success, BMPM exclusively relies on global information, namely, the first order and second order data information; such information might be however unreliable, especially for the minority data. In this paper, we propose a new model called One-Side Probability Machine (OSPM). Different from the previous approaches, OSPM can lead to rigorous treatment on biased classification tasks. Importantly, the proposed OSPM exploits the reliable global information from one side only, i.e., the majority class, while engaging the robust local learning from the other side, i.e., the minority class. To our best knowledge, OSPM presents the first model capable of learning data both locally and globally. Our proposed model has also established close connections with various famous models such as BMPM, Support Vector Machine, and Maxi-Min Margin Machine. One appealing feature is that the optimization problem involved in the novel OSPM model can be cast as a convex second order conic programming problem with the global optimum guaranteed. A series of experimental results on three data sets demonstrate the advantages of our proposed methods over four competitive approaches.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2015

Neural Processing Letters 3/2015 Zur Ausgabe