Skip to main content

2018 | OriginalPaper | Buchkapitel

Learning-Induced Sequence Reactivation During Sharp-Wave Ripples: A Computational Study

verfasst von : Paola Malerba, Katya Tsimring, Maxim Bazhenov

Erschienen in: Advances in the Mathematical Sciences

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During sleep, memories formed during the day are consolidated in a dialogue between cortex and hippocampus. The reactivation of specific neural activity patterns—replay—during sleep has been observed in both structures and is hypothesized to represent a neuronal substrate of consolidation. In the hippocampus, replay happens during sharp-wave ripple complexes (SWR), when short bouts of excitatory activity in area CA3 induce high-frequency oscillations in area CA1. In particular, recordings of hippocampal cells which spike at a specific location (“place cells”) show that recently learned trajectories are reactivated during CA1 ripples in the following sleep period. Despite the importance of sleep replay, its underlying neural mechanisms are still poorly understood.
We used a previously developed model of sharp-wave ripples activity, to study the effects of learning-induced synaptic changes on spontaneous sequence reactivation during CA3 sharp waves. In this study, we implemented a paradigm including three epochs: Pre-sleep, learning, and Post-sleep activity. We first tested the effects of learning on the hippocampal network activity through changes in a minimal number of synapses connecting selected pyramidal cells. We then introduced an explicit trajectory-learning task to the learning portion of the paradigm, to obtain behavior-induced synaptic changes. Our analysis revealed that recently learned trajectories were reactivated during sleep more often than other trajectories in the training field. This study predicts that the gain of reactivation rate during sleep following vs sleep preceding learning for a trained sequence of pyramidal cells depends on Pre-sleep activation of the same sequence, and on the amount of trajectory repetitions included in the training phase.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Mednick, K. Nakayama, R. Stickgold, Sleep-dependent learning: a nap is as good as a night. Nat. Neurosci. 6(7), 697–698 (2003)CrossRef S. Mednick, K. Nakayama, R. Stickgold, Sleep-dependent learning: a nap is as good as a night. Nat. Neurosci. 6(7), 697–698 (2003)CrossRef
2.
Zurück zum Zitat S.C. Mednick, D.J. Cai, T. Shuman, S. Anagnostaras, J.T. Wixted, An opportunistic theory of cellular and systems consolidation. Trends Neurosci. 34(10), 504–514 (2011)CrossRef S.C. Mednick, D.J. Cai, T. Shuman, S. Anagnostaras, J.T. Wixted, An opportunistic theory of cellular and systems consolidation. Trends Neurosci. 34(10), 504–514 (2011)CrossRef
3.
Zurück zum Zitat S.C. Mednick, T. Makovski, D.J. Cai, Y.V. Jiang, Sleep and rest facilitate implicit memory in a visual search task. Vis. Res 49, 2557 (2009)CrossRef S.C. Mednick, T. Makovski, D.J. Cai, Y.V. Jiang, Sleep and rest facilitate implicit memory in a visual search task. Vis. Res 49, 2557 (2009)CrossRef
4.
Zurück zum Zitat B. Rasch, J. Born, About sleep’s role in memory. Physiol. Rev. 93(2), 681–766 (2013)CrossRef B. Rasch, J. Born, About sleep’s role in memory. Physiol. Rev. 93(2), 681–766 (2013)CrossRef
5.
Zurück zum Zitat I. Wilhelm, S. Diekelmann, I. Molzow, A. Ayoub, M. Mölle, J. Born, Sleep selectively enhances memory expected to be of future relevance. J. Neurosci. 31(5), 1563–1569 (2011)CrossRef I. Wilhelm, S. Diekelmann, I. Molzow, A. Ayoub, M. Mölle, J. Born, Sleep selectively enhances memory expected to be of future relevance. J. Neurosci. 31(5), 1563–1569 (2011)CrossRef
6.
Zurück zum Zitat L. Marshall, H. Helgadottir, M. Molle, J. Born, Boosting slow oscillations during sleep potentiates memory. Nature 444(7119), 610–613 (2006)CrossRef L. Marshall, H. Helgadottir, M. Molle, J. Born, Boosting slow oscillations during sleep potentiates memory. Nature 444(7119), 610–613 (2006)CrossRef
7.
Zurück zum Zitat E.A. McDevitt, K.A. Duggan, S.C. Mednick, REM sleep rescues learning from interference. Neurobiol. Learn. Mem. 122, 51 (2014)CrossRef E.A. McDevitt, K.A. Duggan, S.C. Mednick, REM sleep rescues learning from interference. Neurobiol. Learn. Mem. 122, 51 (2014)CrossRef
8.
Zurück zum Zitat S.C. Mednick, E.A. McDevitt, J.K. Walsh, E. Wamsley, M. Paulus, J.C. Kanady, S.P. Drummond, The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study. J. Neurosci. 33(10), 4494–4504 (2013)CrossRef S.C. Mednick, E.A. McDevitt, J.K. Walsh, E. Wamsley, M. Paulus, J.C. Kanady, S.P. Drummond, The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study. J. Neurosci. 33(10), 4494–4504 (2013)CrossRef
9.
Zurück zum Zitat C.V. Latchoumane, H.V. Ngo, J. Born, H.S. Shin, Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron 95, 424 (2017)CrossRef C.V. Latchoumane, H.V. Ngo, J. Born, H.S. Shin, Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron 95, 424 (2017)CrossRef
10.
Zurück zum Zitat B.P. Staresina, T.O. Bergmann, M. Bonnefond, R. van der Meij, O. Jensen, L. Deuker, C.E. Elger, N. Axmacher, J. Fell, Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat. Neurosci. 18(11), 1679–1686 (2015)CrossRef B.P. Staresina, T.O. Bergmann, M. Bonnefond, R. van der Meij, O. Jensen, L. Deuker, C.E. Elger, N. Axmacher, J. Fell, Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat. Neurosci. 18(11), 1679–1686 (2015)CrossRef
11.
Zurück zum Zitat G. Buzsaki, Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25(10), 1073–1188 (2015)CrossRef G. Buzsaki, Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25(10), 1073–1188 (2015)CrossRef
12.
Zurück zum Zitat G. Buzsaki, D.L. Buhl, K.D. Harris, J. Csicsvari, B. Czeh, A. Morozov, Hippocampal network patterns of activity in the mouse. Neuroscience 116(1), 201–211 (2003)CrossRef G. Buzsaki, D.L. Buhl, K.D. Harris, J. Csicsvari, B. Czeh, A. Morozov, Hippocampal network patterns of activity in the mouse. Neuroscience 116(1), 201–211 (2003)CrossRef
13.
Zurück zum Zitat C.D. Schwindel, B.L. McNaughton, Hippocampal-cortical interactions and the dynamics of memory trace reactivation. Prog. Brain Res. 193, 163–177 (2011)CrossRef C.D. Schwindel, B.L. McNaughton, Hippocampal-cortical interactions and the dynamics of memory trace reactivation. Prog. Brain Res. 193, 163–177 (2011)CrossRef
14.
Zurück zum Zitat J. Csicsvari, H. Hirase, A. Czurko, A. Mamiya, G. Buzsaki, Fast network oscillations in the hippocampal CA1 region of the behaving rat. J. Neurosci. 19(16), Rc20 (1999)CrossRef J. Csicsvari, H. Hirase, A. Czurko, A. Mamiya, G. Buzsaki, Fast network oscillations in the hippocampal CA1 region of the behaving rat. J. Neurosci. 19(16), Rc20 (1999)CrossRef
15.
Zurück zum Zitat J. Csicsvari, H. Hirase, A. Czurko, A. Mamiya, G. Buzsaki, Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19(1), 274–287 (1999)CrossRef J. Csicsvari, H. Hirase, A. Czurko, A. Mamiya, G. Buzsaki, Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19(1), 274–287 (1999)CrossRef
16.
Zurück zum Zitat J. Csicsvari, H. Hirase, A. Mamiya, G. Buzsáki, Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28(2), 585–594 (2000)CrossRef J. Csicsvari, H. Hirase, A. Mamiya, G. Buzsáki, Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28(2), 585–594 (2000)CrossRef
17.
Zurück zum Zitat A. Ylinen, A. Bragin, Z. Nadasdy, G. Jando, I. Szabo, A. Sik, G. Buzsaki, Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15(1 Pt 1), 30–46 (1995)CrossRef A. Ylinen, A. Bragin, Z. Nadasdy, G. Jando, I. Szabo, A. Sik, G. Buzsaki, Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J. Neurosci. 15(1 Pt 1), 30–46 (1995)CrossRef
18.
Zurück zum Zitat J. O’Keefe, Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109 (1976)CrossRef J. O’Keefe, Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109 (1976)CrossRef
19.
Zurück zum Zitat J.M. O’Keefe, L. Nadel, The Hippocampus as a Cognitive Map (Clarendon Press/Oxford University Press, Oxford/New York, 1978) J.M. O’Keefe, L. Nadel, The Hippocampus as a Cognitive Map (Clarendon Press/Oxford University Press, Oxford/New York, 1978)
20.
Zurück zum Zitat J. O’Neill, T. Senior, J. Csicsvari, Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 49(1), 143–155 (2006)CrossRef J. O’Neill, T. Senior, J. Csicsvari, Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 49(1), 143–155 (2006)CrossRef
21.
Zurück zum Zitat W.E. Skaggs, B.L. McNaughton, Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271(5257), 1870–1873 (1996)CrossRef W.E. Skaggs, B.L. McNaughton, Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271(5257), 1870–1873 (1996)CrossRef
22.
Zurück zum Zitat G.R. Sutherland, B. McNaughton, Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr. Opin. Neurobiol. 10(2), 180–186 (2000)CrossRef G.R. Sutherland, B. McNaughton, Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr. Opin. Neurobiol. 10(2), 180–186 (2000)CrossRef
23.
Zurück zum Zitat M.A. Wilson, B.L. McNaughton, Reactivation of hippocampal ensemble memories during sleep. Science 265(5172), 676–679 (1994)CrossRef M.A. Wilson, B.L. McNaughton, Reactivation of hippocampal ensemble memories during sleep. Science 265(5172), 676–679 (1994)CrossRef
24.
Zurück zum Zitat G. Girardeau, M. Zugaro, Hippocampal ripples and memory consolidation. Curr. Opin. Neurobiol. 21(3), 452–459 (2011)CrossRef G. Girardeau, M. Zugaro, Hippocampal ripples and memory consolidation. Curr. Opin. Neurobiol. 21(3), 452–459 (2011)CrossRef
25.
Zurück zum Zitat H.S. Kudrimoti, C.A. Barnes, B.L. McNaughton, Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19(10), 4090–4101 (1999)CrossRef H.S. Kudrimoti, C.A. Barnes, B.L. McNaughton, Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19(10), 4090–4101 (1999)CrossRef
26.
Zurück zum Zitat Z. Nádasdy, H. Hirase, A. Czurkó, J. Csicsvari, G. Buzsáki, Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19(21), 9497–9507 (1999)CrossRef Z. Nádasdy, H. Hirase, A. Czurkó, J. Csicsvari, G. Buzsáki, Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19(21), 9497–9507 (1999)CrossRef
27.
Zurück zum Zitat V. Ego-Stengel, M.A. Wilson, Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20(1), 1–10 (2010) V. Ego-Stengel, M.A. Wilson, Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20(1), 1–10 (2010)
28.
Zurück zum Zitat G. Girardeau, K. Benchenane, S.I. Wiener, G. Buzsaki, M.B. Zugaro, Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12(10), 1222–1223 (2009)CrossRef G. Girardeau, K. Benchenane, S.I. Wiener, G. Buzsaki, M.B. Zugaro, Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12(10), 1222–1223 (2009)CrossRef
29.
Zurück zum Zitat A.D. Grosmark, G. Buzsaki, Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science 351(6280), 1440–1443 (2016)CrossRef A.D. Grosmark, G. Buzsaki, Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science 351(6280), 1440–1443 (2016)CrossRef
30.
Zurück zum Zitat G. Bi, M. Poo, Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24, 139–166 (2001)CrossRef G. Bi, M. Poo, Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24, 139–166 (2001)CrossRef
31.
Zurück zum Zitat M.S. Rioult-Pedotti, D. Friedman, J.P. Donoghue, Learning-induced LTP in neocortex. Science 290(5491), 533–536 (2000)CrossRef M.S. Rioult-Pedotti, D. Friedman, J.P. Donoghue, Learning-induced LTP in neocortex. Science 290(5491), 533–536 (2000)CrossRef
32.
Zurück zum Zitat J.H. Sadowski, M.W. Jones, J.R. Mellor, Sharp-wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus. Cell Rep. 14(8), 1916–1929 (2016)CrossRef J.H. Sadowski, M.W. Jones, J.R. Mellor, Sharp-wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus. Cell Rep. 14(8), 1916–1929 (2016)CrossRef
33.
Zurück zum Zitat P. Malerba, A. Fodder, M. Jones, M. Bazhenov, Modeling of coordinated sequence replay in CA3 and CA1 during sharp wave-ripples, in Society for Neuroscience Annual Meeting San Diego, CA, 2016 Neuroscience Meeting Planner (2016) P. Malerba, A. Fodder, M. Jones, M. Bazhenov, Modeling of coordinated sequence replay in CA3 and CA1 during sharp wave-ripples, in Society for Neuroscience Annual Meeting San Diego, CA, 2016 Neuroscience Meeting Planner (2016)
34.
Zurück zum Zitat P. Malerba, G.P. Krishnan, J.M. Fellous, M. Bazhenov, Hippocampal CA1 ripples as inhibitory transients. PLoS Comput. Biol. 12(4), e1004880 (2016)CrossRef P. Malerba, G.P. Krishnan, J.M. Fellous, M. Bazhenov, Hippocampal CA1 ripples as inhibitory transients. PLoS Comput. Biol. 12(4), e1004880 (2016)CrossRef
35.
Zurück zum Zitat G.M. Shepherd, The Synaptic Organization of the Brain (Oxford University Press, Oxford, 2004)CrossRef G.M. Shepherd, The Synaptic Organization of the Brain (Oxford University Press, Oxford, 2004)CrossRef
36.
Zurück zum Zitat J. Deuchars, A.M. Thomson, CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74(4), 1009–1018 (1996) J. Deuchars, A.M. Thomson, CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74(4), 1009–1018 (1996)
37.
Zurück zum Zitat P. Andersen, R. Morris, D. Amaral, T. Bliss, J. O'Keefe, The Hippocampus Book (Oxford University Press, New York, 2006)CrossRef P. Andersen, R. Morris, D. Amaral, T. Bliss, J. O'Keefe, The Hippocampus Book (Oxford University Press, New York, 2006)CrossRef
38.
Zurück zum Zitat K. Mizuseki, S. Royer, K. Diba, G. Buzsáki, Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons. Hippocampus 22(8), 1659–1680 (2012)CrossRef K. Mizuseki, S. Royer, K. Diba, G. Buzsáki, Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons. Hippocampus 22(8), 1659–1680 (2012)CrossRef
39.
Zurück zum Zitat D. Sullivan, J. Csicsvari, K. Mizuseki, S. Montgomery, K. Diba, G. Buzsáki, Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity. J. Neurosci. 31(23), 8605–8616 (2011)CrossRef D. Sullivan, J. Csicsvari, K. Mizuseki, S. Montgomery, K. Diba, G. Buzsáki, Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity. J. Neurosci. 31(23), 8605–8616 (2011)CrossRef
41.
Zurück zum Zitat J. Patel, E.W. Schomburg, A. Berenyi, S. Fujisawa, G. Buzsaki, Local generation and propagation of ripples along the septotemporal axis of the hippocampus. J. Neurosci. 33(43), 17029–17041 (2013)CrossRef J. Patel, E.W. Schomburg, A. Berenyi, S. Fujisawa, G. Buzsaki, Local generation and propagation of ripples along the septotemporal axis of the hippocampus. J. Neurosci. 33(43), 17029–17041 (2013)CrossRef
42.
Zurück zum Zitat N. Rebola, M. Carta, C. Mulle, Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat. Rev. Neurosci. 18(4), 208–220 (2017)CrossRef N. Rebola, M. Carta, C. Mulle, Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat. Rev. Neurosci. 18(4), 208–220 (2017)CrossRef
43.
Zurück zum Zitat L.F. Cobar, L. Yuan, A. Tashiro, Place cells and long-term potentiation in the hippocampus. Neurobiol. Learn. Mem. 138, 206–214 (2017)CrossRef L.F. Cobar, L. Yuan, A. Tashiro, Place cells and long-term potentiation in the hippocampus. Neurobiol. Learn. Mem. 138, 206–214 (2017)CrossRef
44.
Zurück zum Zitat R.A. Nicoll, A brief history of long-term potentiation. Neuron 93(2), 281–290 (2017)CrossRef R.A. Nicoll, A brief history of long-term potentiation. Neuron 93(2), 281–290 (2017)CrossRef
45.
Zurück zum Zitat D. Manahan-Vaughan, Learning-related hippocampal long-term potentiation and long-term depression A2, in Learning and Memory: A Comprehensive Reference, 2nd edn., ed. By J.H. Byrne (Academic Press, Oxford, 2017), pp. 585–609CrossRef D. Manahan-Vaughan, Learning-related hippocampal long-term potentiation and long-term depression A2, in Learning and Memory: A Comprehensive Reference, 2nd edn., ed. By J.H. Byrne (Academic Press, Oxford, 2017), pp. 585–609CrossRef
46.
Zurück zum Zitat C. Pinar, C.J. Fontaine, J. Trivino-Paredes, C.P. Lottenberg, J. Gil-Mohapel, B.R. Christie, Revisiting the flip side: long-term depression of synaptic efficacy in the hippocampus. Neurosci. Biobehav. Rev. 80, 394–413 (2017)CrossRef C. Pinar, C.J. Fontaine, J. Trivino-Paredes, C.P. Lottenberg, J. Gil-Mohapel, B.R. Christie, Revisiting the flip side: long-term depression of synaptic efficacy in the hippocampus. Neurosci. Biobehav. Rev. 80, 394–413 (2017)CrossRef
47.
Zurück zum Zitat K. Mizuseki, G. Buzsaki, Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Rep. 4(5), 1010–1021 (2013)CrossRef K. Mizuseki, G. Buzsaki, Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Rep. 4(5), 1010–1021 (2013)CrossRef
48.
Zurück zum Zitat Y. Omura, M.M. Carvalho, K. Inokuchi, T. Fukai, A lognormal recurrent network model for burst generation during hippocampal sharp waves. J. Neurosci. 35(43), 14585–14601 (2015)CrossRef Y. Omura, M.M. Carvalho, K. Inokuchi, T. Fukai, A lognormal recurrent network model for burst generation during hippocampal sharp waves. J. Neurosci. 35(43), 14585–14601 (2015)CrossRef
49.
Zurück zum Zitat D.A. McCormick, Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39, 337–388 (1992)CrossRef D.A. McCormick, Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39, 337–388 (1992)CrossRef
50.
Zurück zum Zitat D.A. McCormick, H.C. Pape, A. Williamson, Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Prog. Brain Res. 88, 293–305 (1991)CrossRef D.A. McCormick, H.C. Pape, A. Williamson, Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Prog. Brain Res. 88, 293–305 (1991)CrossRef
51.
Zurück zum Zitat M. Vassalle, Contribution of the Na+/K+-pump to the membrane potential. Experientia 43(11-12), 1135–1140 (1987)CrossRef M. Vassalle, Contribution of the Na+/K+-pump to the membrane potential. Experientia 43(11-12), 1135–1140 (1987)CrossRef
52.
Zurück zum Zitat F.F. Offner, Ion flow through membranes and the resting potential of cells. J. Membr. Biol. 123(2), 171–182 (1991)CrossRef F.F. Offner, Ion flow through membranes and the resting potential of cells. J. Membr. Biol. 123(2), 171–182 (1991)CrossRef
53.
Zurück zum Zitat Y. Burak, I.R. Fiete, Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5(2), e1000291 (2009)MathSciNetCrossRef Y. Burak, I.R. Fiete, Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 5(2), e1000291 (2009)MathSciNetCrossRef
54.
Zurück zum Zitat L.M. Giocomo, M.B. Moser, E.I. Moser, Computational models of grid cells. Neuron 71(4), 589–603 (2011)CrossRef L.M. Giocomo, M.B. Moser, E.I. Moser, Computational models of grid cells. Neuron 71(4), 589–603 (2011)CrossRef
55.
Zurück zum Zitat E. Kropff, A. Treves, The emergence of grid cells: intelligent design or just adaptation? Hippocampus 18(12), 1256–1269 (2008)CrossRef E. Kropff, A. Treves, The emergence of grid cells: intelligent design or just adaptation? Hippocampus 18(12), 1256–1269 (2008)CrossRef
56.
Zurück zum Zitat B. Jones, E. Bukoski, L. Nadel, J.M. Fellous, Remaking memories: reconsolidation updates positively motivated spatial memory in rats. Learn. Mem. 19(3), 91–98 (2012)CrossRef B. Jones, E. Bukoski, L. Nadel, J.M. Fellous, Remaking memories: reconsolidation updates positively motivated spatial memory in rats. Learn. Mem. 19(3), 91–98 (2012)CrossRef
57.
Zurück zum Zitat B.J. Jones, S.M. Pest, I.M. Vargas, E.L. Glisky, J.M. Fellous, Contextual reminders fail to trigger memory reconsolidation in aged rats and aged humans. Neurobiol. Learn. Mem. 120, 7–15 (2015)CrossRef B.J. Jones, S.M. Pest, I.M. Vargas, E.L. Glisky, J.M. Fellous, Contextual reminders fail to trigger memory reconsolidation in aged rats and aged humans. Neurobiol. Learn. Mem. 120, 7–15 (2015)CrossRef
58.
Zurück zum Zitat L.A. Atherton, D. Dupret, J.R. Mellor, Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci. 38(9), 560–570 (2015)CrossRef L.A. Atherton, D. Dupret, J.R. Mellor, Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends Neurosci. 38(9), 560–570 (2015)CrossRef
59.
Zurück zum Zitat M.R. Mehta, From synaptic plasticity to spatial maps and sequence learning. Hippocampus 25(6), 756–762 (2015)CrossRef M.R. Mehta, From synaptic plasticity to spatial maps and sequence learning. Hippocampus 25(6), 756–762 (2015)CrossRef
60.
Zurück zum Zitat V. Cutsuridis, M. Hasselmo, Spatial memory sequence encoding and replay during modeled theta and ripple oscillations. Cogn. Comput. 4(3), 554–574 (2011)CrossRef V. Cutsuridis, M. Hasselmo, Spatial memory sequence encoding and replay during modeled theta and ripple oscillations. Cogn. Comput. 4(3), 554–574 (2011)CrossRef
61.
Zurück zum Zitat M. Bazhenov, I. Timofeev, M. Steriade, T.J. Sejnowski, Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22(19), 8691–8704 (2002)CrossRef M. Bazhenov, I. Timofeev, M. Steriade, T.J. Sejnowski, Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22(19), 8691–8704 (2002)CrossRef
62.
Zurück zum Zitat G.P. Krishnan, S. Chauvette, I.S. Shamie, S. Soltani, I. Timofeev, S.S. Cash, E. Halgren, M. Bazhenov, Cellular and neurochemical basis of sleep stages in thalamocortical network. Elife 5, e18607 (2016)CrossRef G.P. Krishnan, S. Chauvette, I.S. Shamie, S. Soltani, I. Timofeev, S.S. Cash, E. Halgren, M. Bazhenov, Cellular and neurochemical basis of sleep stages in thalamocortical network. Elife 5, e18607 (2016)CrossRef
63.
Zurück zum Zitat Y. Wei, G. Krishnan, M. Bazhenov. Synaptic mechanisms of memory consolidation during NREM sleep. Society for Neuroscience. San Diego, CA. Program No. 82.01 (2016) Y. Wei, G. Krishnan, M. Bazhenov. Synaptic mechanisms of memory consolidation during NREM sleep. Society for Neuroscience. San Diego, CA. Program No. 82.01 (2016)
64.
Zurück zum Zitat Y. Wei, G.P. Krishnan, M. Bazhenov, Synaptic mechanisms of memory consolidation during sleep slow oscillations. J. Neurosci. 36(15), 4231–4247 (2016)CrossRef Y. Wei, G.P. Krishnan, M. Bazhenov, Synaptic mechanisms of memory consolidation during sleep slow oscillations. J. Neurosci. 36(15), 4231–4247 (2016)CrossRef
65.
Zurück zum Zitat N. Kopell, C. Börgers, D. Pervouchine, P. Malerba, A. Tort, Gamma and theta rhythms in biophysical models of hippocampal circuits, in Hippocampal Microcircuits (Springer, New York, 2010), pp. 423–457CrossRef N. Kopell, C. Börgers, D. Pervouchine, P. Malerba, A. Tort, Gamma and theta rhythms in biophysical models of hippocampal circuits, in Hippocampal Microcircuits (Springer, New York, 2010), pp. 423–457CrossRef
68.
Zurück zum Zitat T. Broicher, P. Malerba, A.D. Dorval, A. Borisyuk, F.R. Fernandez, J.A. White, Spike phase locking in CA1 pyramidal neurons depends on background conductance and firing rate. J. Neurosci. 32(41), 14374–14388 (2012)CrossRef T. Broicher, P. Malerba, A.D. Dorval, A. Borisyuk, F.R. Fernandez, J.A. White, Spike phase locking in CA1 pyramidal neurons depends on background conductance and firing rate. J. Neurosci. 32(41), 14374–14388 (2012)CrossRef
69.
Zurück zum Zitat F.R. Fernandez, T. Broicher, A. Truong, J.A. White, Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high-conductance state. J. Neurosci. 31(10), 3880–3893 (2011)CrossRef F.R. Fernandez, T. Broicher, A. Truong, J.A. White, Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high-conductance state. J. Neurosci. 31(10), 3880–3893 (2011)CrossRef
70.
Zurück zum Zitat R. Brette, W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)CrossRef R. Brette, W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)CrossRef
71.
Zurück zum Zitat J. Touboul, R. Brette, Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biol. Cybern. 99(4-5), 319–334 (2008)MathSciNetCrossRef J. Touboul, R. Brette, Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biol. Cybern. 99(4-5), 319–334 (2008)MathSciNetCrossRef
72.
Zurück zum Zitat G.E. Uhlenbeck, L.S. Ornstein, On the theory of the Brownian motion. Phys. Rev. 36(5), 823 (1930)CrossRef G.E. Uhlenbeck, L.S. Ornstein, On the theory of the Brownian motion. Phys. Rev. 36(5), 823 (1930)CrossRef
73.
Zurück zum Zitat A. Roxin, N. Brunel, D. Hansel, G. Mongillo, C. van Vreeswijk, On the distribution of firing rates in networks of cortical neurons. J. Neurosci. 31(45), 16217–16226 (2011)CrossRef A. Roxin, N. Brunel, D. Hansel, G. Mongillo, C. van Vreeswijk, On the distribution of firing rates in networks of cortical neurons. J. Neurosci. 31(45), 16217–16226 (2011)CrossRef
74.
Zurück zum Zitat X.G. Li, P. Somogyi, A. Ylinen, G. Buzsáki, The hippocampal CA3 network: an in vivo intracellular labeling study. J. Comp. Neurol. 339(2), 181–208 (1994)CrossRef X.G. Li, P. Somogyi, A. Ylinen, G. Buzsáki, The hippocampal CA3 network: an in vivo intracellular labeling study. J. Comp. Neurol. 339(2), 181–208 (1994)CrossRef
75.
Zurück zum Zitat J. Taxidis, S. Coombes, R. Mason, M.R. Owen, Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus 22(5), 995–1017 (2012)CrossRef J. Taxidis, S. Coombes, R. Mason, M.R. Owen, Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses. Hippocampus 22(5), 995–1017 (2012)CrossRef
76.
Zurück zum Zitat B.V. Atallah, M. Scanziani, Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 62(4), 566–577 (2009)CrossRef B.V. Atallah, M. Scanziani, Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 62(4), 566–577 (2009)CrossRef
77.
Zurück zum Zitat M. Bartos, I. Vida, M. Frotscher, A. Meyer, H. Monyer, J.R. Geiger, P. Jonas, Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl. Acad. Sci. U. S. A. 99(20), 13222–13227 (2002)CrossRef M. Bartos, I. Vida, M. Frotscher, A. Meyer, H. Monyer, J.R. Geiger, P. Jonas, Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl. Acad. Sci. U. S. A. 99(20), 13222–13227 (2002)CrossRef
78.
Zurück zum Zitat V. Cutsuridis, B. Graham, S. Cobb, I. Vida, Hippocampal Microcircuits: A Computational Modeler’s Resource Book (Springer, New York, 2010)CrossRef V. Cutsuridis, B. Graham, S. Cobb, I. Vida, Hippocampal Microcircuits: A Computational Modeler’s Resource Book (Springer, New York, 2010)CrossRef
Metadaten
Titel
Learning-Induced Sequence Reactivation During Sharp-Wave Ripples: A Computational Study
verfasst von
Paola Malerba
Katya Tsimring
Maxim Bazhenov
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-98684-5_11