Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.08.2014 | Ausgabe 1-2/2014

International Journal of Computer Vision 1-2/2014

Learning Kernels for Unsupervised Domain Adaptation with Applications to Visual Object Recognition

Zeitschrift:
International Journal of Computer Vision > Ausgabe 1-2/2014
Autoren:
Boqing Gong, Kristen Grauman, Fei Sha
Wichtige Hinweise
Communicated by Hal Daumé.

Abstract

Domain adaptation aims to correct the mismatch in statistical properties between the source domain on which a classifier is trained and the target domain to which the classifier is to be applied. In this paper, we address the challenging scenario of unsupervised domain adaptation, where the target domain does not provide any annotated data to assist in adapting the classifier. Our strategy is to learn robust features which are resilient to the mismatch across domains and then use them to construct classifiers that will perform well on the target domain. To this end, we propose novel kernel learning approaches to infer such features for adaptation. Concretely, we explore two closely related directions. In the first direction, we propose unsupervised learning of a geodesic flow kernel (GFK). The GFK summarizes the inner products in an infinite sequence of feature subspaces that smoothly interpolates between the source and target domains. In the second direction, we propose supervised learning of a kernel that discriminatively combines multiple base GFKs. Those base kernels model the source and the target domains at fine-grained granularities. In particular, each base kernel pivots on a different set of landmarks—the most useful data instances that reveal the similarity between the source and the target domains, thus bridging them to achieve adaptation. Our approaches are computationally convenient, automatically infer important hyper-parameters, and are capable of learning features and classifiers discriminatively without demanding labeled data from the target domain. In extensive empirical studies on standard benchmark recognition datasets, our appraches yield state-of-the-art results compared to a variety of competing methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1-2/2014

International Journal of Computer Vision 1-2/2014 Zur Ausgabe

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise