Skip to main content
Erschienen in: Autonomous Robots 4/2019

02.05.2018

Learning position and orientation dynamics from demonstrations via contraction analysis

verfasst von: Harish chaandar Ravichandar, Ashwin Dani

Erschienen in: Autonomous Robots | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a unified framework of model-learning algorithms, called contracting dynamical system primitives (CDSP), that can be used to learn pose (i.e., position and orientation) dynamics of point-to-point motions from demonstrations. The position and the orientation (represented using quaternions) trajectories are modeled as two separate autonomous nonlinear dynamical systems. The special constraints of the \({\mathbb {S}}^{3}\) manifold are enforced in the formulation of the system that models the orientation dynamics. To capture the variability in the demonstrations, the dynamical systems are estimated using Gaussian mixture models (GMMs). The parameters of the GMMs are learned subject to the constraints derived using partial contraction analysis. The learned models’ reproductions are shown to accurately reproduce the demonstrations and are guaranteed to converge to the desired goal location. Experimental results illustrate the CDSP algorithm’s ability to accurately learn position and orientation dynamics and the utility of the learned models in path generation for a Baxter robot arm. The CDSP algorithm is evaluated on a publicly available dataset and a synthetic dataset, and is shown to have the lowest and comparable average reproduction errors when compared to state-of-the-art imitation learning algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Following the notation in partial contraction analysis literature (Wang and Slotine 2005), \(\varvec{x}\left( t\right) \) is written twice to represent the dependency of \(\varvec{x}\left( t\right) \) in multiple places in \(f\left( \cdot \right) \).
 
2
In \(f_{p}\left( \varvec{x}\left( t\right) ,\varvec{x}\left( t\right) \right) \), the first argument refers to the \(\varvec{x}\left( t\right) \) in \(h_{p}\left( \cdot \right) \) and the second argument refers to the \(\varvec{x}\left( t\right) \) in the affine part of \(f_{p}\left( \cdot \right) \).
 
3
In \(f_{o}\left( \varvec{\omega }\left( t\right) ,\varvec{\omega }\left( t\right) ,\varvec{q}\left( t\right) ,\varvec{q}_{g}\right) \), the first argument refers to the \(\varvec{\omega }\left( t\right) \) in \(h_{o}\left( \cdot \right) \) and the second argument refers to the \(\varvec{\omega }\left( t\right) \) in the affine part of \(f_{o}\left( \cdot \right) \).
 
Literatur
Zurück zum Zitat Abbeel, P., & Ng, A. Y., (2004). Apprenticeship learning via inverse reinforcement learning. In International conference on machine learning (pp. 1–8). ACM. Abbeel, P., & Ng, A. Y., (2004). Apprenticeship learning via inverse reinforcement learning. In International conference on machine learning (pp. 1–8). ACM.
Zurück zum Zitat Ahmadzadeh, R., Rana, M. A., & Chernova, S. (2017). Generalized cylinders for learning, reproduction, generalization, and refinement of robot skills. In Robotics: Science and systems. Ahmadzadeh, R., Rana, M. A., & Chernova, S. (2017). Generalized cylinders for learning, reproduction, generalization, and refinement of robot skills. In Robotics: Science and systems.
Zurück zum Zitat Akgun, B., Cakmak, M., Jiang, K., & Thomaz, A. L. (2012). Keyframe-based learning from demonstration. International Journal of Social Robotics, 4(4), 343–355.CrossRef Akgun, B., Cakmak, M., Jiang, K., & Thomaz, A. L. (2012). Keyframe-based learning from demonstration. International Journal of Social Robotics, 4(4), 343–355.CrossRef
Zurück zum Zitat Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483.CrossRef Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483.CrossRef
Zurück zum Zitat Billard, A., & Matarić, M. J. (2001). Learning human arm movements by imitation: Evaluation of a biologically inspired connectionist architecture. Robotics and Autonomous Systems, 37(2), 145–160.CrossRefMATH Billard, A., & Matarić, M. J. (2001). Learning human arm movements by imitation: Evaluation of a biologically inspired connectionist architecture. Robotics and Autonomous Systems, 37(2), 145–160.CrossRefMATH
Zurück zum Zitat Bowen, C., & Alterovitz, R. (2014). Closed-loop global motion planning for reactive execution of learned tasks. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1754–1760). Bowen, C., & Alterovitz, R. (2014). Closed-loop global motion planning for reactive execution of learned tasks. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1754–1760).
Zurück zum Zitat Calinon, S., Bruno, D., Caldwell, D. G. (2014). A task-parameterized probabilistic model with minimal intervention control. In IEEE international conference on robotics and automation (ICRA) (pp. 3339–3344). Calinon, S., Bruno, D., Caldwell, D. G. (2014). A task-parameterized probabilistic model with minimal intervention control. In IEEE international conference on robotics and automation (ICRA) (pp. 3339–3344).
Zurück zum Zitat Cohn, D. A., Ghahramani, Z., & Jordan, M. I. (1996). Active learning with statistical models. Journal of Artificial Intelligence Research, 4, 129–145.CrossRefMATH Cohn, D. A., Ghahramani, Z., & Jordan, M. I. (1996). Active learning with statistical models. Journal of Artificial Intelligence Research, 4, 129–145.CrossRefMATH
Zurück zum Zitat Corke, P. I. (2011). Robotics, vision and control: Fundamental algorithms in Matlab. Berlin: Springer.CrossRefMATH Corke, P. I. (2011). Robotics, vision and control: Fundamental algorithms in Matlab. Berlin: Springer.CrossRefMATH
Zurück zum Zitat Dani, A. P., Chung, S. J., & Hutchinson, S. (2015). Observer design for stochastic nonlinear systems via contraction-based incremental stability. IEEE Transactions on Automatic Control, 60(3), 700–714.MathSciNetCrossRefMATH Dani, A. P., Chung, S. J., & Hutchinson, S. (2015). Observer design for stochastic nonlinear systems via contraction-based incremental stability. IEEE Transactions on Automatic Control, 60(3), 700–714.MathSciNetCrossRefMATH
Zurück zum Zitat Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the E–M algorithm. Journal of the Royal Statistical Society Series B (Methodological), 39(1), 1–38.MathSciNetCrossRefMATH Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the E–M algorithm. Journal of the Royal Statistical Society Series B (Methodological), 39(1), 1–38.MathSciNetCrossRefMATH
Zurück zum Zitat Diankov, R. (2010). Automated construction of robotic manipulation programs. Ph.D. thesis, Carnegie Mellon University. Diankov, R. (2010). Automated construction of robotic manipulation programs. Ph.D. thesis, Carnegie Mellon University.
Zurück zum Zitat Dragan, A. D., Muelling, K., Bagnell, J. A., & Srinivasa, S. S. (2015). Movement primitives via optimization. In IEEE international conference on robotics and automation (ICRA) (pp. 2339–2346). Dragan, A. D., Muelling, K., Bagnell, J. A., & Srinivasa, S. S. (2015). Movement primitives via optimization. In IEEE international conference on robotics and automation (ICRA) (pp. 2339–2346).
Zurück zum Zitat Gribovskaya, E., Khansari-Zadeh, S. M., & Billard, A. (2010). Learning non-linear multivariate dynamics of motion in robotic manipulators. The International Journal of Robotics Research, 30(1), 80–117.CrossRef Gribovskaya, E., Khansari-Zadeh, S. M., & Billard, A. (2010). Learning non-linear multivariate dynamics of motion in robotic manipulators. The International Journal of Robotics Research, 30(1), 80–117.CrossRef
Zurück zum Zitat Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Learning rhythmic movements by demonstration using nonlinear oscillators. In IEEE/RSJ international conference on intelligent robots and systems (pp. 958–963). Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Learning rhythmic movements by demonstration using nonlinear oscillators. In IEEE/RSJ international conference on intelligent robots and systems (pp. 958–963).
Zurück zum Zitat Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2), 328–373.MathSciNetCrossRefMATH Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computation, 25(2), 328–373.MathSciNetCrossRefMATH
Zurück zum Zitat Jenkins, O. C., Mataric, M. J., & Weber, S., et al. (2000). Primitive-based movement classification for humanoid imitation. In IEEE-RAS international conference on humanoid robotics. Jenkins, O. C., Mataric, M. J., & Weber, S., et al. (2000). Primitive-based movement classification for humanoid imitation. In IEEE-RAS international conference on humanoid robotics.
Zurück zum Zitat Kalakrishnan, M., Righetti, L., Pastor, P., & Schaal, S. (2012). Learning force control policies for compliant robotic manipulation. In International conference on machine learning (pp. 49–50). Kalakrishnan, M., Righetti, L., Pastor, P., & Schaal, S. (2012). Learning force control policies for compliant robotic manipulation. In International conference on machine learning (pp. 49–50).
Zurück zum Zitat Khansari-Zadeh, S. M., & Billard, A. (2010). Imitation learning of globally stable non-linear point-to-point robot motions using nonlinear programming. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2676–2683). Khansari-Zadeh, S. M., & Billard, A. (2010). Imitation learning of globally stable non-linear point-to-point robot motions using nonlinear programming. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2676–2683).
Zurück zum Zitat Khansari-Zadeh, S. M., & Billard, A. (2011). Learning stable nonlinear dynamical systems with gaussian mixture models. IEEE Transactions on Robotics, 27(5), 943–957.CrossRef Khansari-Zadeh, S. M., & Billard, A. (2011). Learning stable nonlinear dynamical systems with gaussian mixture models. IEEE Transactions on Robotics, 27(5), 943–957.CrossRef
Zurück zum Zitat Khansari-Zadeh, S. M., & Billard, A. (2014). Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions. Robotics and Autonomous Systems, 62(6), 752–765.CrossRef Khansari-Zadeh, S. M., & Billard, A. (2014). Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions. Robotics and Autonomous Systems, 62(6), 752–765.CrossRef
Zurück zum Zitat Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 32(11), 1238–1274.CrossRef Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 32(11), 1238–1274.CrossRef
Zurück zum Zitat Koenig, N., & Matarić, M. J. (2016). Robot life-long task learning from human demonstrations: A bayesian approach. Autonomous Robots, 40(6), 1–16. Koenig, N., & Matarić, M. J. (2016). Robot life-long task learning from human demonstrations: A bayesian approach. Autonomous Robots, 40(6), 1–16.
Zurück zum Zitat Langsfeld, J. D., Kaipa, K. N., Gentili, R. J., Reggia, J. A., & Gupta, S. K. (2014). Incorporating failure-to-success transitions in imitation learning for a dynamic pouring task. In IEEE/RSJ international conference on intelligent robots and systems. Langsfeld, J. D., Kaipa, K. N., Gentili, R. J., Reggia, J. A., & Gupta, S. K. (2014). Incorporating failure-to-success transitions in imitation learning for a dynamic pouring task. In IEEE/RSJ international conference on intelligent robots and systems.
Zurück zum Zitat Laumond, J. P., Mansard, N., & Lasserre, J. B. (2014). Optimality in robot motion: Optimal versus optimized motion. Communications of the ACM, 57(9), 82–89.CrossRef Laumond, J. P., Mansard, N., & Lasserre, J. B. (2014). Optimality in robot motion: Optimal versus optimized motion. Communications of the ACM, 57(9), 82–89.CrossRef
Zurück zum Zitat Laumond, J. P., Mansard, N., & Lasserre, J. B. (2015). Optimization as motion selection principle in robot action. Communications of the ACM, 58(5), 64–74.CrossRef Laumond, J. P., Mansard, N., & Lasserre, J. B. (2015). Optimization as motion selection principle in robot action. Communications of the ACM, 58(5), 64–74.CrossRef
Zurück zum Zitat Lemme, A., Neumann, K., Reinhart, R. F., & Steil, J. J. (2013). Neurally imprinted stable vector fields. In European symposium on artificial neural networks (pp. 327–332). Lemme, A., Neumann, K., Reinhart, R. F., & Steil, J. J. (2013). Neurally imprinted stable vector fields. In European symposium on artificial neural networks (pp. 327–332).
Zurück zum Zitat Nemec, B., Tamo, M., Worgotter, F., & Ude, A. (2009). Task adaptation through exploration and action sequencing. In IEEE-RAS international conference on humanoid robots (pp. 610–616). Nemec, B., Tamo, M., Worgotter, F., & Ude, A. (2009). Task adaptation through exploration and action sequencing. In IEEE-RAS international conference on humanoid robots (pp. 610–616).
Zurück zum Zitat Neumann, K., & Steil, J. J. (2015). Learning robot motions with stable dynamical systems under diffeomorphic transformations. Robotics and Autonomous Systems, 70, 1–15.CrossRef Neumann, K., & Steil, J. J. (2015). Learning robot motions with stable dynamical systems under diffeomorphic transformations. Robotics and Autonomous Systems, 70, 1–15.CrossRef
Zurück zum Zitat Paraschos, A., Daniel, C., Peters, J. R., & Neumann, G. (2013). Probabilistic movement primitives. In Advances in neural information processing systems (pp. 2616–2624). Paraschos, A., Daniel, C., Peters, J. R., & Neumann, G. (2013). Probabilistic movement primitives. In Advances in neural information processing systems (pp. 2616–2624).
Zurück zum Zitat Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor skills by learning from demonstration. In IEEE international conference on robotics and automation (pp. 763–768). Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor skills by learning from demonstration. In IEEE international conference on robotics and automation (pp. 763–768).
Zurück zum Zitat Peters, J., & Schaal, S. (2008). Natural actor-critic. Neurocomputing, 71(7), 1180–1190.CrossRef Peters, J., & Schaal, S. (2008). Natural actor-critic. Neurocomputing, 71(7), 1180–1190.CrossRef
Zurück zum Zitat Priess, M. C., Choi, J., & Radcliffe, C. (2014). The inverse problem of continuous-time linear quadratic gaussian control with application to biological systems analysis. In ASME 2014 dynamic systems and control conference. Priess, M. C., Choi, J., & Radcliffe, C. (2014). The inverse problem of continuous-time linear quadratic gaussian control with application to biological systems analysis. In ASME 2014 dynamic systems and control conference.
Zurück zum Zitat Rai, A., Meier, F., Ijspeert, A., & Schaal, S. (2014). Learning coupling terms for obstacle avoidance. In International conference on humanoid robotics (pp. 512–518). Rai, A., Meier, F., Ijspeert, A., & Schaal, S. (2014). Learning coupling terms for obstacle avoidance. In International conference on humanoid robotics (pp. 512–518).
Zurück zum Zitat Ravichandar, H., & Dani, A. P. (2015). Learning contracting nonlinear dynamics from human demonstration for robot motion planning. In ASME dynamic systems and control conference (DSCC). Ravichandar, H., & Dani, A. P. (2015). Learning contracting nonlinear dynamics from human demonstration for robot motion planning. In ASME dynamic systems and control conference (DSCC).
Zurück zum Zitat Ravichandar, H., & Dani, A. P. (2016). Human modeling for bio-inspired robotics. In Intention Inference for human–robot collaboration in assistive robotics (pp. 217–249). Elsevier. Ravichandar, H., & Dani, A. P. (2016). Human modeling for bio-inspired robotics. In Intention Inference for human–robot collaboration in assistive robotics (pp. 217–249). Elsevier.
Zurück zum Zitat Ravichandar, H., Salehi, I., & Dani, A. (2017). Learning partially contracting dynamical systems from demonstrations. In Proceedings of the 1st annual conference on robot learning (Vol. 78, pp. 369–378). PMLR. Ravichandar, H., Salehi, I., & Dani, A. (2017). Learning partially contracting dynamical systems from demonstrations. In Proceedings of the 1st annual conference on robot learning (Vol. 78, pp. 369–378). PMLR.
Zurück zum Zitat Ravichandar, H., Thota, P. K., & Dani, A. P. (2016). Learning periodic motions from human demonstrations using transverse contraction analysis. In American control conference (ACC) (pp. 4853–4858). IEEE. Ravichandar, H., Thota, P. K., & Dani, A. P. (2016). Learning periodic motions from human demonstrations using transverse contraction analysis. In American control conference (ACC) (pp. 4853–4858). IEEE.
Zurück zum Zitat Rossano, G. F., Martinez, C., Hedelind, M., Murphy, S., & Fuhlbrigge, T. A. (2013). Easy robot programming concepts: An industrial perspective. In IEEE international conference on automation science and engineering (CASE) (pp. 1119–1126). Rossano, G. F., Martinez, C., Hedelind, M., Murphy, S., & Fuhlbrigge, T. A. (2013). Easy robot programming concepts: An industrial perspective. In IEEE international conference on automation science and engineering (CASE) (pp. 1119–1126).
Zurück zum Zitat Saunders, J., Nehaniv, C. L., & Dautenhahn, K. (2006). Teaching robots by moulding behavior and scaffolding the environment. In ACM SIGCHI/SIGART conference on human–robot interaction (pp. 118–125). Saunders, J., Nehaniv, C. L., & Dautenhahn, K. (2006). Teaching robots by moulding behavior and scaffolding the environment. In ACM SIGCHI/SIGART conference on human–robot interaction (pp. 118–125).
Zurück zum Zitat Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences, 3(6), 233–242.CrossRef Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences, 3(6), 233–242.CrossRef
Zurück zum Zitat Schaal, S., Mohajerian, P., & Ijspeert, A. (2007). Dynamics systems vs. optimal control-a unifying view. Progress in Brain Research, 165, 425–445.CrossRef Schaal, S., Mohajerian, P., & Ijspeert, A. (2007). Dynamics systems vs. optimal control-a unifying view. Progress in Brain Research, 165, 425–445.CrossRef
Zurück zum Zitat Silvério, J., Rozo, L., Calinon, S., & Caldwell, D. G. (2015). Learning bimanual end-effector poses from demonstrations using task-parameterized dynamical systems. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 464–470). Silvério, J., Rozo, L., Calinon, S., & Caldwell, D. G. (2015). Learning bimanual end-effector poses from demonstrations using task-parameterized dynamical systems. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 464–470).
Zurück zum Zitat Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). Cambridge: MIT Press.MATH Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). Cambridge: MIT Press.MATH
Zurück zum Zitat Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 1226–1235.CrossRef Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 1226–1235.CrossRef
Zurück zum Zitat Ude, A., Nemec, B., Petrić, T., & Morimoto, J. (2014). Orientation in cartesian space dynamic movement primitives. In IEEE international conference on robotics and automation (ICRA) (pp. 2997–3004). Ude, A., Nemec, B., Petrić, T., & Morimoto, J. (2014). Orientation in cartesian space dynamic movement primitives. In IEEE international conference on robotics and automation (ICRA) (pp. 2997–3004).
Zurück zum Zitat Ude, A. (1999). Filtering in a unit quaternion space for model-based object tracking. Robotics and Autonomous Systems, 28(2), 163–172.CrossRef Ude, A. (1999). Filtering in a unit quaternion space for model-based object tracking. Robotics and Autonomous Systems, 28(2), 163–172.CrossRef
Zurück zum Zitat Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Transactions on Robotics, 26(5), 800–815.CrossRef Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Transactions on Robotics, 26(5), 800–815.CrossRef
Zurück zum Zitat Wang, C., Zhao, Y., Lin, C. Y., & Tomizuka, M. (2014). Fast planning of well conditioned trajectories for model learning. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1460–1465). Wang, C., Zhao, Y., Lin, C. Y., & Tomizuka, M. (2014). Fast planning of well conditioned trajectories for model learning. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1460–1465).
Zurück zum Zitat Wang, W., & Slotine, J. J. E. (2005). On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics, 92(1), 38–53.MathSciNetCrossRefMATH Wang, W., & Slotine, J. J. E. (2005). On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics, 92(1), 38–53.MathSciNetCrossRefMATH
Zurück zum Zitat Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M., et al. (2013). CHOMP: Covariant hamiltonian optimization for motion planning. The International Journal of Robotics Research, 32(9–10), 1164–1193.CrossRef Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M., et al. (2013). CHOMP: Covariant hamiltonian optimization for motion planning. The International Journal of Robotics Research, 32(9–10), 1164–1193.CrossRef
Metadaten
Titel
Learning position and orientation dynamics from demonstrations via contraction analysis
verfasst von
Harish chaandar Ravichandar
Ashwin Dani
Publikationsdatum
02.05.2018
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 4/2019
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-018-9758-x

Weitere Artikel der Ausgabe 4/2019

Autonomous Robots 4/2019 Zur Ausgabe

Neuer Inhalt