Skip to main content
Erschienen in: Neural Processing Letters 1/2019

03.03.2018

Learning Robust Weighted Group Sparse Graph for Discriminant Visual Analysis

verfasst von: Tan Guo, Xiaoheng Tan, Lei Zhang, Qin Liu, Lu Deng, Chaochen Xie

Erschienen in: Neural Processing Letters | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, sparse representation (SR) based graph has been successfully applied for dimensionality reduction (DR). However, the unsupervised characteristic of SR may cause instable representation results, which is undesired for graph construction. To alleviate the problem, a robust weighted group sparse representation (RWGSR) method is developed by minimizing the combination of l1-norm regularized representation fidelity and the weighted l2,1-norm regularized representation coefficients. RWGSR can find the robust and stable intrinsic intra-class and inter-class adjacent relations of samples. The intra-class and inter-class representations of RWGSR are then utilized to construct corresponding intra-class and inter-class graphs. With the graphs, a novel supervised DR algorithm named robust weighted group sparse graph based embedding (RWGSE) is proposed. Benefitting from RWGSR, RWGSE considers both intra-class and inter-class intrinsic structures of data, and seeks a low-dimensional subspace by simultaneously minimizing the intra-class scatter and maximizing the inter-class scatter. Extensive experiments on public benchmark face and object datasets show the effectiveness of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang L, Zhang D (2016) Visual understanding via multi-feature shared learning with global consistency. IEEE Trans Multimed 18(2):247–259CrossRef Zhang L, Zhang D (2016) Visual understanding via multi-feature shared learning with global consistency. IEEE Trans Multimed 18(2):247–259CrossRef
2.
Zurück zum Zitat Sha C, Zhao H (2017) Design and analysis of associative memories based on external inputs of continuous bidirectional associative networks. Neurocomputing 266:433–444CrossRef Sha C, Zhao H (2017) Design and analysis of associative memories based on external inputs of continuous bidirectional associative networks. Neurocomputing 266:433–444CrossRef
3.
Zurück zum Zitat Zhang L, Zhang D (2017) Evolutionary cost-sensitive extreme learning machine. IEEE Trans Neural Netw Learn Syst 28(12):3045–3060MathSciNetCrossRef Zhang L, Zhang D (2017) Evolutionary cost-sensitive extreme learning machine. IEEE Trans Neural Netw Learn Syst 28(12):3045–3060MathSciNetCrossRef
4.
Zurück zum Zitat Donoho DL, et al (2000) High-dimensional data analysis: the curses and blessings of dimensionality. In: AMS math challenges lecture, pp 1–32 Donoho DL, et al (2000) High-dimensional data analysis: the curses and blessings of dimensionality. In: AMS math challenges lecture, pp 1–32
5.
Zurück zum Zitat Zhang L, Zhang D (2015) Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans Instrum Meas 64(7):1790–1801CrossRef Zhang L, Zhang D (2015) Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans Instrum Meas 64(7):1790–1801CrossRef
6.
Zurück zum Zitat Wang L, Chen S (2017) Joint representation classification for collective face recognition. Pattern Recognit 63(5):182–192CrossRef Wang L, Chen S (2017) Joint representation classification for collective face recognition. Pattern Recognit 63(5):182–192CrossRef
7.
Zurück zum Zitat Zhang Q, Deng K, Chu T (2016) Sparsity induced locality preserving projection approaches for dimensionality reduction. Neurocomputing 200(C):35–46 Zhang Q, Deng K, Chu T (2016) Sparsity induced locality preserving projection approaches for dimensionality reduction. Neurocomputing 200(C):35–46
8.
Zurück zum Zitat Kasun LLC, Yang Y, Huang GB et al (2016) Dimension reduction with extreme learning machine. IEEE Trans Image Process 25(8):1–1MathSciNetMATHCrossRef Kasun LLC, Yang Y, Huang GB et al (2016) Dimension reduction with extreme learning machine. IEEE Trans Image Process 25(8):1–1MathSciNetMATHCrossRef
9.
Zurück zum Zitat Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1):37–52CrossRef Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1):37–52CrossRef
10.
Zurück zum Zitat Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef
11.
Zurück zum Zitat Lu GF, Zou J, Wang Y (2016) A new and fast implementation of orthogonal LDA algorithm and its incremental extension. Neural Process Lett 43(3):687–707CrossRef Lu GF, Zou J, Wang Y (2016) A new and fast implementation of orthogonal LDA algorithm and its incremental extension. Neural Process Lett 43(3):687–707CrossRef
12.
Zurück zum Zitat Lu GF, Wang Y, Zou J (2016) Graph maximum margin criterion for face recognition. Neural Process Lett 44(2):1–19CrossRef Lu GF, Wang Y, Zou J (2016) Graph maximum margin criterion for face recognition. Neural Process Lett 44(2):1–19CrossRef
13.
Zurück zum Zitat Tenenbaum JB, Silva VD, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323CrossRef Tenenbaum JB, Silva VD, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323CrossRef
14.
Zurück zum Zitat Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef
15.
Zurück zum Zitat Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Proceedings of the 14th international conference on neural information processing systems: natural and synthetic, Vancouver, British Columbia, Canada, 03–08 Dec 2001, pp 585–591 Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Proceedings of the 14th international conference on neural information processing systems: natural and synthetic, Vancouver, British Columbia, Canada, 03–08 Dec 2001, pp 585–591
16.
Zurück zum Zitat He X, Niyogi P (2002) Locality preserving projections. Adv Neural Inf Process Syst 16(1):186–197 He X, Niyogi P (2002) Locality preserving projections. Adv Neural Inf Process Syst 16(1):186–197
17.
Zurück zum Zitat He X, Cai D, Yan S, Zhang H-J (2005) Neighborhood preserving embedding. In: The 10th IEEE international conference on computer vision, 2005, vol 2. IEEE, Beijing, pp 1208–1213 He X, Cai D, Yan S, Zhang H-J (2005) Neighborhood preserving embedding. In: The 10th IEEE international conference on computer vision, 2005, vol 2. IEEE, Beijing, pp 1208–1213
18.
Zurück zum Zitat Yan S, Xu D, Zhang B, Zhang H-J (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef Yan S, Xu D, Zhang B, Zhang H-J (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef
19.
Zurück zum Zitat Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J Mach Learn Res 8(1):1027–1061MATH Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. J Mach Learn Res 8(1):1027–1061MATH
20.
Zurück zum Zitat Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan SC (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98:1031–1044CrossRef Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan SC (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98:1031–1044CrossRef
21.
22.
Zurück zum Zitat Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341MATHCrossRef Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341MATHCrossRef
23.
Zurück zum Zitat Wei L, Xu F, Wu A (2013) Weighted discriminative sparsity preserving embedding for face recognition. Knowl Based Syst 57(2):136–145 Wei L, Xu F, Wu A (2013) Weighted discriminative sparsity preserving embedding for face recognition. Knowl Based Syst 57(2):136–145
24.
Zurück zum Zitat Huang H, Yang M (2015) Dimensionality reduction of hyperspectral images with sparse discriminant Embedding. IEEE Trans Geosci Remote Sens 53(9):5160–5169CrossRef Huang H, Yang M (2015) Dimensionality reduction of hyperspectral images with sparse discriminant Embedding. IEEE Trans Geosci Remote Sens 53(9):5160–5169CrossRef
25.
Zurück zum Zitat Zang F, Zhang JS (2011) Discriminative learning by sparse representation for classification. Neurocomputing 74:2176–2183CrossRef Zang F, Zhang JS (2011) Discriminative learning by sparse representation for classification. Neurocomputing 74:2176–2183CrossRef
26.
Zurück zum Zitat Lu GF, Jin Z, Zou J (2012) Face recognition using discriminant sparsity neighborhood preserving Embedding. Knowl Based Syst 31:119–127CrossRef Lu GF, Jin Z, Zou J (2012) Face recognition using discriminant sparsity neighborhood preserving Embedding. Knowl Based Syst 31:119–127CrossRef
27.
Zurück zum Zitat Lai J, Jiang X (2016) Classwise sparse and collaborative patch representation for face recognition. IEEE Trans Image Process 25(7):3261–3272MathSciNetMATHCrossRef Lai J, Jiang X (2016) Classwise sparse and collaborative patch representation for face recognition. IEEE Trans Image Process 25(7):3261–3272MathSciNetMATHCrossRef
28.
Zurück zum Zitat Grave É, Obozinski G, Bach F (2011) Trace lasso: a trace norm regularization for correlated designs. In: Proceedings of the 24th international conference on neural information processing systems, Granada, Spain, 12–15 Dec 2011, pp 2187–2195 Grave É, Obozinski G, Bach F (2011) Trace lasso: a trace norm regularization for correlated designs. In: Proceedings of the 24th international conference on neural information processing systems, Granada, Spain, 12–15 Dec 2011, pp 2187–2195
29.
Zurück zum Zitat Wright J, Yang AY, Ganesh A et al (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef Wright J, Yang AY, Ganesh A et al (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef
30.
Zurück zum Zitat He W, Zhang H, Zhang L et al (2017) Weighted sparse graph based dimensionality reduction for Hyperspectral images. IEEE Geosci Remote Sens Lett 13(5):686–690CrossRef He W, Zhang H, Zhang L et al (2017) Weighted sparse graph based dimensionality reduction for Hyperspectral images. IEEE Geosci Remote Sens Lett 13(5):686–690CrossRef
31.
Zurück zum Zitat Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781CrossRef Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781CrossRef
32.
Zurück zum Zitat Guo T, Zhang L, Tan X (2017) Neuron pruning-based discriminative extreme learning machine for pattern classification. Cognit Comput 9(4):581–595CrossRef Guo T, Zhang L, Tan X (2017) Neuron pruning-based discriminative extreme learning machine for pattern classification. Cognit Comput 9(4):581–595CrossRef
33.
Zurück zum Zitat Ly NH, Qian D, Fowler JE (2014) Sparse graph-based discriminant analysis for hyperspectral imagery. IEEE Trans Geosci Remote Sens 52(7):3872–3884CrossRef Ly NH, Qian D, Fowler JE (2014) Sparse graph-based discriminant analysis for hyperspectral imagery. IEEE Trans Geosci Remote Sens 52(7):3872–3884CrossRef
34.
Zurück zum Zitat Gao S, Tsang WH, Chia LT (2013) Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Trans Pattern Anal Mach Intell 35(1):92–104CrossRef Gao S, Tsang WH, Chia LT (2013) Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Trans Pattern Anal Mach Intell 35(1):92–104CrossRef
35.
Zurück zum Zitat Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B (Stat Methodol) 68(1):49–67MathSciNetMATHCrossRef Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B (Stat Methodol) 68(1):49–67MathSciNetMATHCrossRef
36.
Zurück zum Zitat Yang J, Wright J, Huang T, Ma Y (2010) Image super-resolution via sparse representation of raw patches. IEEE Trans Image Process 19(11):2861–2873MathSciNetMATHCrossRef Yang J, Wright J, Huang T, Ma Y (2010) Image super-resolution via sparse representation of raw patches. IEEE Trans Image Process 19(11):2861–2873MathSciNetMATHCrossRef
37.
Zurück zum Zitat Zhang L, Zhang D (2016) Robust visual knowledge transfer via extreme learning machine based domain adaptation. IEEE Trans Image Process 25(10):4959–4973MathSciNetMATHCrossRef Zhang L, Zhang D (2016) Robust visual knowledge transfer via extreme learning machine based domain adaptation. IEEE Trans Image Process 25(10):4959–4973MathSciNetMATHCrossRef
38.
Zurück zum Zitat Zhang L, Zuo W, Zhang D (2016) LSDT: latent sparse domain transfer learning for visual adaptation. IEEE Trans Image Process 25(3):1177–1191MathSciNetMATHCrossRef Zhang L, Zuo W, Zhang D (2016) LSDT: latent sparse domain transfer learning for visual adaptation. IEEE Trans Image Process 25(3):1177–1191MathSciNetMATHCrossRef
39.
Zurück zum Zitat Xu Y, Fang X, Wu J et al (2015) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process 25(2):850–863MathSciNetMATHCrossRef Xu Y, Fang X, Wu J et al (2015) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process 25(2):850–863MathSciNetMATHCrossRef
40.
Zurück zum Zitat Donoho D (2006) For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829MathSciNetMATHCrossRef Donoho D (2006) For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829MathSciNetMATHCrossRef
41.
Zurück zum Zitat Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288MathSciNetMATH Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288MathSciNetMATH
42.
Zurück zum Zitat Lin Z, Chen M, Wu L, Ma Y (2009) The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, UIUC. Technical Report, UILU-ENG-09-2215 Lin Z, Chen M, Wu L, Ma Y (2009) The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, UIUC. Technical Report, UILU-ENG-09-2215
43.
Zurück zum Zitat Deng W, Yin W, Zhang Y (2011) Group sparse optimization by alternating direction method. Department of Computational and Applied Mathematics, Rice University, Houston, Technical Report, TR11-06 Deng W, Yin W, Zhang Y (2011) Group sparse optimization by alternating direction method. Department of Computational and Applied Mathematics, Rice University, Houston, Technical Report, TR11-06
44.
Zurück zum Zitat Cai D, He X, Han J, Zhang H-J (2006) Orthogonal laplacianfaces for face recognition. IEEE Trans Image Process 15(11):3608–3614CrossRef Cai D, He X, Han J, Zhang H-J (2006) Orthogonal laplacianfaces for face recognition. IEEE Trans Image Process 15(11):3608–3614CrossRef
45.
Zurück zum Zitat Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660CrossRef Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660CrossRef
46.
Zurück zum Zitat Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618CrossRef Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618CrossRef
47.
Zurück zum Zitat Nene SA, Nayar SK, Murase H (1996) Columbia object image library (COIL-20). Technical Report, CUCS-005-96 Nene SA, Nayar SK, Murase H (1996) Columbia object image library (COIL-20). Technical Report, CUCS-005-96
Metadaten
Titel
Learning Robust Weighted Group Sparse Graph for Discriminant Visual Analysis
verfasst von
Tan Guo
Xiaoheng Tan
Lei Zhang
Qin Liu
Lu Deng
Chaochen Xie
Publikationsdatum
03.03.2018
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 1/2019
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-018-9809-5

Weitere Artikel der Ausgabe 1/2019

Neural Processing Letters 1/2019 Zur Ausgabe

Neuer Inhalt