Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.09.2019 | Ausgabe 1/2020

Neural Processing Letters 1/2020

Learning the Graph Edit Costs Based on a Learning Model Applied to Sub-optimal Graph Matching

Zeitschrift:
Neural Processing Letters > Ausgabe 1/2020
Autoren:
Pep Santacruz, Francesc Serratosa
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Attributed graphs are used to represent patterns composed of several parts in pattern recognition. The nature of these patterns can be diverse, from images, to handwritten characters, maps or fingerprints. Graph edit distance has become an important tool in structural pattern recognition since it allows us to measure the dissimilarity of attributed graphs. It is based on transforming one graph into another through some edit operations such as substitution, deletion and insertion of nodes and edges. It has two main constraints: it requires an adequate definition of the costs of these operations and its computation cost is exponential with regard to the number of nodes. In this paper, we first present a general framework to automatically learn these edit costs considering graph edit distance is computed in a sub-optima way. Then, we specify this framework in two different models based on neural networks and probability density functions. An exhaustive practical validation on 14 public databases, which have different features such as the size of the graphs, the number of attributes or the number of graphs per class have been performed. This validation shows that with the learned edit costs, the accuracy is higher than with some manually imposed costs or other costs automatically learned by previous methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2020

Neural Processing Letters 1/2020 Zur Ausgabe