Skip to main content

2021 | OriginalPaper | Buchkapitel

Learning Topology: Bridging Computational Topology and Machine Learning

verfasst von : Davide Moroni, Maria Antonietta Pascali

Erschienen in: Pattern Recognition. ICPR International Workshops and Challenges

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Topology is a classical branch of mathematics, born essentially from Euler’s studies in the XVII century, which deals with the abstract notion of shape and geometry. Last decades were characterised by a renewed interest in topology and topology-based tools, due to the birth of computational topology and Topological Data Analysis (TDA). A large and novel family of methods and algorithms computing topological features and descriptors (e.g. persistent homology) have proved to be effective tools for the analysis of graphs, 3d objects, 2D images, and even heterogeneous datasets. This survey is intended to be a concise but complete compendium that, offering the essential basic references, allows you to orient yourself among the recent advances in TDA and its applications, with an eye to those related to machine learning and deep learning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adams, H., et al.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(1), 218–252 (2017)MathSciNet Adams, H., et al.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(1), 218–252 (2017)MathSciNet
3.
Zurück zum Zitat Barsocchi, P., Cassará, P., Giorgi, D., Moroni, D., Pascali, M.: Computational topology to monitor human occupancy. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, p. 99 (2018) Barsocchi, P., Cassará, P., Giorgi, D., Moroni, D., Pascali, M.: Computational topology to monitor human occupancy. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, p. 99 (2018)
5.
Zurück zum Zitat Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: Phat-persistent homology algorithms toolbox. J. Symbol. Comput. 78, 76–90 (2017)MathSciNetCrossRef Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: Phat-persistent homology algorithms toolbox. J. Symbol. Comput. 78, 76–90 (2017)MathSciNetCrossRef
6.
Zurück zum Zitat Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imag. Vis. 32(2) 161 (2008) Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imag. Vis. 32(2) 161 (2008)
7.
Zurück zum Zitat Bowman, G., et al.: Structural insight into RNA hairpin folding intermediates. J. Am. Chem. Soc. 130(30), 9676–9678 (2008)CrossRef Bowman, G., et al.: Structural insight into RNA hairpin folding intermediates. J. Am. Chem. Soc. 130(30), 9676–9678 (2008)CrossRef
8.
Zurück zum Zitat Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(3), 77–102 (2015)MathSciNetMATH Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(3), 77–102 (2015)MathSciNetMATH
9.
Zurück zum Zitat Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vision 76, 1–12 (2008)MathSciNetCrossRef Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vision 76, 1–12 (2008)MathSciNetCrossRef
12.
Zurück zum Zitat Carlsson, G., Gabrielsson, R.B.: Topological approaches to deep learning. In: Baas, N.A., Carlsson, G.E., Quick, G., Szymik, M., Thaule, M. (eds.) Topological Data Analysis, pp. 119–146. Springer International Publishing, Cham (2020)CrossRef Carlsson, G., Gabrielsson, R.B.: Topological approaches to deep learning. In: Baas, N.A., Carlsson, G.E., Quick, G., Szymik, M., Thaule, M. (eds.) Topological Data Analysis, pp. 119–146. Springer International Publishing, Cham (2020)CrossRef
13.
Zurück zum Zitat Carrière, M., Cuturi, M., Oudot, S.: Sliced wasserstein kernel for persistence diagrams. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70. p. 664–673. ICML 2017, JMLR.org (2017) Carrière, M., Cuturi, M., Oudot, S.: Sliced wasserstein kernel for persistence diagrams. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70. p. 664–673. ICML 2017, JMLR.org (2017)
14.
Zurück zum Zitat Carriére, M., Oudot, S.Y., Ovsjanikov, M.: Stable topological signatures for points on 3d shapes. Comput. Graph. Forum 34(5), 1–12 (2015)CrossRef Carriére, M., Oudot, S.Y., Ovsjanikov, M.: Stable topological signatures for points on 3d shapes. Comput. Graph. Forum 34(5), 1–12 (2015)CrossRef
15.
Zurück zum Zitat Carrière, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M., Umeda, Y.: Perslay: A neural network layer for persistence diagrams and new graph topological signatures (2020) Carrière, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M., Umeda, Y.: Perslay: A neural network layer for persistence diagrams and new graph topological signatures (2020)
16.
Zurück zum Zitat Cerri, A., Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36, 1543–1557 (2013)MathSciNetCrossRef Cerri, A., Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36, 1543–1557 (2013)MathSciNetCrossRef
17.
Zurück zum Zitat Cerri, A., Ferri, M., Giorgi, D.: Retrieval of trademark images by means of size functions. Graph. Models 68(5), 451–471 (2006)CrossRef Cerri, A., Ferri, M., Giorgi, D.: Retrieval of trademark images by means of size functions. Graph. Models 68(5), 451–471 (2006)CrossRef
18.
Zurück zum Zitat Chan, J.M., Carlsson, G., Rabadan, R.: Topology of viral evolution. Proc. Natl. Acad. Sci. 110(46), 18566–18571 (2013)MathSciNetCrossRef Chan, J.M., Carlsson, G., Rabadan, R.: Topology of viral evolution. Proc. Natl. Acad. Sci. 110(46), 18566–18571 (2013)MathSciNetCrossRef
19.
Zurück zum Zitat Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L.: Stochastic convergence of persistence landscapes and silhouettes. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, p. 474–483. SOCG 2014, Association for Computing Machinery, New York, USA (2014) Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L.: Stochastic convergence of persistence landscapes and silhouettes. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, p. 474–483. SOCG 2014, Association for Computing Machinery, New York, USA (2014)
20.
Zurück zum Zitat Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in riemannian manifolds. J. ACM, 60(6) (2013) Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in riemannian manifolds. J. ACM, 60(6) (2013)
21.
Zurück zum Zitat Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discr. Comput. Geom. 37, 103–120 (2007)MathSciNetCrossRef Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discr. Comput. Geom. 37, 103–120 (2007)MathSciNetCrossRef
22.
Zurück zum Zitat Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: Proceedings of the Twenty-second Annual Symposium On Computational Geometry, pp. 119–126 (2006) Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: Proceedings of the Twenty-second Annual Symposium On Computational Geometry, pp. 119–126 (2006)
23.
Zurück zum Zitat De Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co) homology. Inverse Prob. 27(12), 124003 (2011)MathSciNetCrossRef De Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co) homology. Inverse Prob. 27(12), 124003 (2011)MathSciNetCrossRef
24.
Zurück zum Zitat Dey, T.K., Shi, D., Wang, Y.: SimBa: an efficient tool for approximating Rips-filtration persistence via simplicial batch collapse. J. Exp. Algorithmics 24(1), 1–6 (2019)MathSciNetCrossRef Dey, T.K., Shi, D., Wang, Y.: SimBa: an efficient tool for approximating Rips-filtration persistence via simplicial batch collapse. J. Exp. Algorithmics 24(1), 1–6 (2019)MathSciNetCrossRef
27.
Zurück zum Zitat Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010) Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)
28.
Zurück zum Zitat Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discr. Comput. Geom. 28, 511–533 (2002)MathSciNetCrossRef Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discr. Comput. Geom. 28, 511–533 (2002)MathSciNetCrossRef
29.
30.
Zurück zum Zitat Frosini, P.: A distance for similarity classes of submanifolds of a euclidean space. Bull. Australian Math. Soc. 42(3), 407–416 (1990)MathSciNetCrossRef Frosini, P.: A distance for similarity classes of submanifolds of a euclidean space. Bull. Australian Math. Soc. 42(3), 407–416 (1990)MathSciNetCrossRef
31.
Zurück zum Zitat Frosini, P.: Discrete computation of size functions. J. Comb. Inf. Syst. Sci. 17(3–4), 232–250 (1992)MathSciNetMATH Frosini, P.: Discrete computation of size functions. J. Comb. Inf. Syst. Sci. 17(3–4), 232–250 (1992)MathSciNetMATH
32.
Zurück zum Zitat Frosini, P.: Measuring shapes by size functions. In: Casasent, D.P. (ed.) Intelligent Robots and Computer Vision X: Algorithms and Techniques, vol. 1607, pp. 122–133. International Society for Optics and Photonics, SPIE (1992)CrossRef Frosini, P.: Measuring shapes by size functions. In: Casasent, D.P. (ed.) Intelligent Robots and Computer Vision X: Algorithms and Techniques, vol. 1607, pp. 122–133. International Society for Optics and Photonics, SPIE (1992)CrossRef
33.
Zurück zum Zitat Gabrielsson, R.B., Nelson, B.J., Dwaraknath, A., Skraba, P.: A topology layer for machine learning. In: Chiappa, S., Calandra, R. (eds.) Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 108, pp. 1553–1563. PMLR (2020) Gabrielsson, R.B., Nelson, B.J., Dwaraknath, A., Skraba, P.: A topology layer for machine learning. In: Chiappa, S., Calandra, R. (eds.) Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 108, pp. 1553–1563. PMLR (2020)
34.
Zurück zum Zitat Gamble, J., Heo, G.: Exploring uses of persistent homology for statistical analysis of landmark-based shape data. J. Multi. Anal. 101(9), 2184–2199 (2010)MathSciNetCrossRef Gamble, J., Heo, G.: Exploring uses of persistent homology for statistical analysis of landmark-based shape data. J. Multi. Anal. 101(9), 2184–2199 (2010)MathSciNetCrossRef
35.
36.
Zurück zum Zitat Gidea, M., Katz, Y.: Topological data analysis of financial time series: landscapes of crashes. Phys. A 491, 820–834 (2018)MathSciNetCrossRef Gidea, M., Katz, Y.: Topological data analysis of financial time series: landscapes of crashes. Phys. A 491, 820–834 (2018)MathSciNetCrossRef
37.
Zurück zum Zitat Guss, W.H., Salakhutdinov, R.: On characterizing the capacity of neural networks using algebraic topology. CoRR abs/1802.04443 (2018) Guss, W.H., Salakhutdinov, R.: On characterizing the capacity of neural networks using algebraic topology. CoRR abs/1802.04443 (2018)
38.
Zurück zum Zitat Hatcher, A.: Algebraic topology. Cambridge University Press, Cambridge (2000)MATH Hatcher, A.: Algebraic topology. Cambridge University Press, Cambridge (2000)MATH
39.
Zurück zum Zitat Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological signatures. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, p. 1633–1643. NIPS 2017, Curran Associates Inc., Red Hook, NY, USA (2017) Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological signatures. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, p. 1633–1643. NIPS 2017, Curran Associates Inc., Red Hook, NY, USA (2017)
41.
Zurück zum Zitat Horak, D., Maletić, S., Rajković, M.: Persistent homology of complex networks. J. Stat. Mech: Theory Exp. 2009(03), P03034 (2009)MathSciNetCrossRef Horak, D., Maletić, S., Rajković, M.: Persistent homology of complex networks. J. Stat. Mech: Theory Exp. 2009(03), P03034 (2009)MathSciNetCrossRef
42.
Zurück zum Zitat Ichinomiya, T., Obayashi, I., Hiraoka, Y.: Protein-folding analysis using features obtained by persistent homology. Biophys. J. 118(12), 2926–2937 (2020)CrossRef Ichinomiya, T., Obayashi, I., Hiraoka, Y.: Protein-folding analysis using features obtained by persistent homology. Biophys. J. 118(12), 2926–2937 (2020)CrossRef
43.
Zurück zum Zitat Kim, K., Kim, J., Zaheer, M., Kim, J.S., Chazal, F., Wasserman, L.: Pllay: Efficient topological layer based on persistence landscapes (2020) Kim, K., Kim, J., Zaheer, M., Kim, J.S., Chazal, F., Wasserman, L.: Pllay: Efficient topological layer based on persistence landscapes (2020)
44.
Zurück zum Zitat Kusano, G., Fukumizu, K., Hiraoka, Y.: Persistence weighted gaussian kernel for topological data analysis. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning. vol. 48, pp. 2004–2013. ICML 2016, JMLR.org (2016) Kusano, G., Fukumizu, K., Hiraoka, Y.: Persistence weighted gaussian kernel for topological data analysis. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning. vol. 48, pp. 2004–2013. ICML 2016, JMLR.org (2016)
45.
Zurück zum Zitat Le, T., Yamada, M.: Persistence fisher kernel: A riemannian manifold kernel for persistence diagrams. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 10028–10039. NIPS 2018, Curran Associates Inc., Red Hook, NY, USA (2018) Le, T., Yamada, M.: Persistence fisher kernel: A riemannian manifold kernel for persistence diagrams. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 10028–10039. NIPS 2018, Curran Associates Inc., Red Hook, NY, USA (2018)
46.
Zurück zum Zitat Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2003–2010 (2014) Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2003–2010 (2014)
48.
Zurück zum Zitat Masood, T.B., et al.: An overview of the topology toolkit. In: TopoInVis 2019-Topological Methods in Data Analysis and Visualization (2019) Masood, T.B., et al.: An overview of the topology toolkit. In: TopoInVis 2019-Topological Methods in Data Analysis and Visualization (2019)
49.
Zurück zum Zitat Mischaikow, K., Nanda, V.: Morse theory for filtrations and efficient computation of persistent homology. Discr. Comput. Geom. 50(2), 330–353 (2013)MathSciNetCrossRef Mischaikow, K., Nanda, V.: Morse theory for filtrations and efficient computation of persistent homology. Discr. Comput. Geom. 50(2), 330–353 (2013)MathSciNetCrossRef
50.
Zurück zum Zitat Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9(5), 860–872 (2000)CrossRef Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9(5), 860–872 (2000)CrossRef
52.
Zurück zum Zitat Naitzat, G., Zhitnikov, A., Lim, L.H.: Topology of deep neural networks. J. Mach. Learn. Res. 21(184), 1–40 (2020) Naitzat, G., Zhitnikov, A., Lim, L.H.: Topology of deep neural networks. J. Mach. Learn. Res. 21(184), 1–40 (2020)
54.
Zurück zum Zitat Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6(1), 17 (2017)CrossRef Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6(1), 17 (2017)CrossRef
55.
Zurück zum Zitat Pereira, C.M., de Mello, R.F.: Persistent homology for time series and spatial data clustering. Expert Syst. Appl. 42(15), 6026–6038 (2015)CrossRef Pereira, C.M., de Mello, R.F.: Persistent homology for time series and spatial data clustering. Expert Syst. Appl. 42(15), 6026–6038 (2015)CrossRef
56.
Zurück zum Zitat Petri, G., Scolamiero, M., Donato, I., Vaccarino, F.: Topological strata of weighted complex networks. PLoS ONE 8(6), 1–8 (2013)CrossRef Petri, G., Scolamiero, M., Donato, I., Vaccarino, F.: Topological strata of weighted complex networks. PLoS ONE 8(6), 1–8 (2013)CrossRef
57.
Zurück zum Zitat Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4741–4748 (2015) Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4741–4748 (2015)
58.
Zurück zum Zitat Rieck, B., et al.: Neural persistence: a complexity measure for deep neural networks using algebraic topology. In: International Conference on Learning Representations (ICLR) (2019) Rieck, B., et al.: Neural persistence: a complexity measure for deep neural networks using algebraic topology. In: International Conference on Learning Representations (ICLR) (2019)
59.
Zurück zum Zitat Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing discrete morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)CrossRef Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing discrete morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)CrossRef
60.
Zurück zum Zitat Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., Ringach, D.: Topological analysis of population activity in visual cortex. J. Vis. 8(8), 1–18 (2008)CrossRef Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., Ringach, D.: Topological analysis of population activity in visual cortex. J. Vis. 8(8), 1–18 (2008)CrossRef
61.
Zurück zum Zitat Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 45–52 (2010) Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 45–52 (2010)
62.
Zurück zum Zitat Som, A., Choi, H., Ramamurthy, K.N., Buman, M.P., Turaga, P.: Pi-net: a deep learning approach to extract topological persistence images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2020) Som, A., Choi, H., Ramamurthy, K.N., Buman, M.P., Turaga, P.: Pi-net: a deep learning approach to extract topological persistence images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2020)
63.
Zurück zum Zitat Turner, K., Mukherjee, S., Boyer, D.: Persistent homology transform for modeling shapes and surfaces. Inf. Inf. A J. IMA 3(4), 310–344 (2014)MathSciNetMATH Turner, K., Mukherjee, S., Boyer, D.: Persistent homology transform for modeling shapes and surfaces. Inf. Inf. A J. IMA 3(4), 310–344 (2014)MathSciNetMATH
64.
Zurück zum Zitat Umeda, Y.: Time series classification via topological data analysis. Trans. Japanese Soc. Artif. Intell. 32(3), D-G72\(_{1}\)- -12 (2017) Umeda, Y.: Time series classification via topological data analysis. Trans. Japanese Soc. Artif. Intell. 32(3), D-G72\(_{1}\)- -12 (2017)
65.
Zurück zum Zitat Verri, A., Uras, C., Frosini, P., Ferri, M.: On the use of size functions for shape analysis. Biol. Cybern. 70, 99–107 (1993)CrossRef Verri, A., Uras, C., Frosini, P., Ferri, M.: On the use of size functions for shape analysis. Biol. Cybern. 70, 99–107 (1993)CrossRef
66.
Zurück zum Zitat Xia, K., Wei, G.: Persistent homology analysis of protein structure, flexibility, and folding. Int. J. Numer. Method Biomed. Eng. 30(8), 814–844 (2014)MathSciNetCrossRef Xia, K., Wei, G.: Persistent homology analysis of protein structure, flexibility, and folding. Int. J. Numer. Method Biomed. Eng. 30(8), 814–844 (2014)MathSciNetCrossRef
67.
Zurück zum Zitat Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmentation using tree-based shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 457–469 (2017)CrossRef Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmentation using tree-based shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 457–469 (2017)CrossRef
68.
Metadaten
Titel
Learning Topology: Bridging Computational Topology and Machine Learning
verfasst von
Davide Moroni
Maria Antonietta Pascali
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-68821-9_20