Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2018 | OriginalPaper | Buchkapitel

Left Atria Reconstruction from a Series of Sparse Catheter Paths Using Neural Networks

verfasst von : Alon Baram, Moshe Safran, Avi Ben-Cohen, Hayit Greenspan

Erschienen in: Machine Learning for Medical Image Reconstruction

Verlag: Springer International Publishing

Abstract

Modeling and reconstructing the shape of a heart chamber from partial or noisy data is useful in many (minimally) invasive heart procedures. We propose a method to reconstruct the shape of the left atria during the electrophysiology procedure from a series of simple catheter maneuvers. We use left atria shapes generated from a statistical based physical model and approximate traversal locations of catheter maneuvers inside the left atria. These paths mimic realistic ones doable in a lab phantom. We demonstrate the ability of a deep neural network to approximate the atria shape solely based on the given paths. We compare the results against training from partial data generated by the intersection of a randomly generated sphere and the atria. We test the presented network on actual lab phantoms and show promising results.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
1.
Zurück zum Zitat Safran, M., Bar-tal, M.: Model based reconstruction of the heart from sparse samples. US Patent 9,576,107, 21 February 2017 Safran, M., Bar-tal, M.: Model based reconstruction of the heart from sparse samples. US Patent 9,576,107, 21 February 2017
2.
Zurück zum Zitat Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015) Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)
3.
Zurück zum Zitat Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016) CrossRef Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016) CrossRef
4.
Zurück zum Zitat Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine learning, pp. 1096–1103. ACM (2008) Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine learning, pp. 1096–1103. ACM (2008)
5.
Zurück zum Zitat Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Generative and discriminative voxel modeling with convolutional neural networks. arXiv preprint arXiv:​1608.​04236 (2016) Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Generative and discriminative voxel modeling with convolutional neural networks. arXiv preprint arXiv:​1608.​04236 (2016)
6.
Zurück zum Zitat Kingma, D.P., Welling, M.: Auto-encoding variational bayes. Statistics 1050, 10 (2014) Kingma, D.P., Welling, M.: Auto-encoding variational bayes. Statistics 1050, 10 (2014)
8.
Zurück zum Zitat Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016) Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
9.
Zurück zum Zitat Cha, K.H., Hadjiiski, L., Samala, R.K., Chan, H.-P., Caoili, E.M., Cohan, R.H.: Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. Med. Phys. 43(4), 1882–1896 (2016) CrossRef Cha, K.H., Hadjiiski, L., Samala, R.K., Chan, H.-P., Caoili, E.M., Cohan, R.H.: Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets. Med. Phys. 43(4), 1882–1896 (2016) CrossRef
Metadaten
Titel
Left Atria Reconstruction from a Series of Sparse Catheter Paths Using Neural Networks
verfasst von
Alon Baram
Moshe Safran
Avi Ben-Cohen
Hayit Greenspan
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00129-2_16

Premium Partner