Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

09.03.2020 | Original Article | Ausgabe 9/2020

International Journal of Machine Learning and Cybernetics 9/2020

Legal public opinion news abstractive summarization by incorporating topic information

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 9/2020
Autoren:
Yuxin Huang, Zhengtao Yu, Junjun Guo, Zhiqiang Yu, Yantuan Xian
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Automatically generate accurate summaries from legal public opinion news can help readers to grasp the main ideas of news quickly. Although many improved sequence-to-sequence models have been proposed for the abstractive text summarization task, these approaches confront two challenges when addressing domain-specific summarization task: (1) the appropriate selection of domain knowledge; (2) the effective manner of integrating domain knowledge into summarization model. In order to tackle the above challenges, this paper selects the pre-training topic information as the legal domain knowledge, which is then integrated into the sequence-to-sequence model to improve the performance of public opinion news summarization. Concretely, two kinds of topic information are utilized: first, the topic words which denote the main aspects of the source document are encoded to guide the decoding process. Furthermore, the predicted output is forced to have a similar topic probability distribution with the source document. We evaluate our model on a large dataset of legal public opinion news collected from micro-blog, and the experimental results show that the proposed model outperforms existing baseline systems under the rouge metrics. To the best of our knowledge, this work represents the first attempt in the legal public opinion domain for text summarization task.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2020

International Journal of Machine Learning and Cybernetics 9/2020 Zur Ausgabe