Skip to main content

2014 | OriginalPaper | Buchkapitel

Leibnizian Intensional Semantics for Syllogistic Reasoning

verfasst von : Robert van Rooij

Erschienen in: Recent Trends in Philosophical Logic

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Venn diagrams are standardly used to give a semantics for Syllogistic reasoning. This interpretation is extensional. Leibniz, however, preferred an intensional interpretation, according to which a singular and universal sentence is true iff the (meaning of) the predicate is contained in the (meaning of) the subject. Although Leibniz’s preferred interpretation played a major role in his philosophy (in Leibniz [16] he justifies his metaphysical ‘Principle of Sufficient Reason’ in terms of it) he was not able to extend his succesfull intensional interpretation (making use of characteristic numbers) without negative terms to one where also negative terms are allowed. The goal of this paper is to show how syllogistic reasoning with complex terms can be given a natural set theoretic ‘intensional’ semantics, where the meaning of a term is not defined in terms of individuals. We will make use of the ideas behind van Fraassen’s [6, 7] hyperintensional semantics to account for this.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the history of logic, negative terms are also known as indefinite or infinite terms.
 
2
For some adjectives (like ‘tall’ and ‘heavy’) it seems less unreasonable to propose that their negative counterparts have essential properties, but it is perhaps no accident that in natural language these negative counterparts are expressed positively by their antonyms (like ‘short’ and ‘light’).
 
3
The intensional view is also explicitly discussed in Wittgenstein’s Tractatus, 5.1222: if \(p\) follows from \(q\), then the sense of \(p\) is contained in the sense of \(q\).
 
4
According to Leibniz, Aristotle, in contrast to a nominalist like Locke, preferred the intensional interpretation:
Philalethes (expressing Locke’s view) [\(\ldots \)] it appeared to me preferable to reverse the order of the premisses of syllogisms, and to say: All A is B, all B is C, so all A is C, rather than saying All B is C, all A is B, so all A is C. [\(\ldots \)]
Theophilus (expressing Leibniz’s view) [\(\ldots \)] Aristotle may have had a special reason for adopting [what is now] the common arrangement. For rather than saying ‘A is B’ he usually says ‘B is in A’ [\(\ldots \)]. And with that way of stating it he achieves, through the accepted arrangements, the very connection which you insist upon. For instead of saying ‘B is C, A is B, so A is C’, Aristotle will express it thus: ‘C is in B, B is in A, so C is in A’. For instance, instead of saying ‘Rectangles are isogons (i.e. have equal angles), squares are rectangles, so squares are isogons’, Aristotle will put the ‘middle term’ in the middle position without changing the order of the propositions, by stating each of them in a manner which reverses the order of terms, thus: ‘Isogon is in rectangle, rectangle is in square, so isogon is in square’. This manner of statement deserves respect; for indeed the predicate is in the subject, or rather the idea of the predicate is included in the idea of the subject. [\(\ldots \)] The common manner of statements concerns individuals, whereas Aristotle’s refers rather to ideas or universals. [\(\ldots \)]
Leibniz, New Essays on Human Understanding, Book 4, Chap. 17, Sect. 8)
 
5
Having a non-empty intersection of the intensions of \(S\) and \(T\) is not enough for the sentence SiP to be true: although both gold and silver clearly share a property (e.g. being a metal) this doesn’t mean that there is something both pure gold and pure silver.
 
6
Glashoff [10] rightly complains that Sotirov’s solution is not completely in the spirit of Leibniz’s assumptions: Leibniz asumed that the builiding blocks (the prime numbers) can be an infinite set. This is impossible with Sotirov’s solution.
 
7
Sommers [25] proposed an alternative numerical way to account for for syllogistic reasoning without making use of prime numbers, and more in the spirit of the medieval distribution theory. Unfortunately, Sommers’ numerical method alone doesn’t quite do the job. He needs an additional non-numerical rule: the requirement that for a syllogism to be valid, the number of particular conclusions must equal the number of particular premises. Friedman [8] improved on Sommers’ method by getting rid of this additional rule. In fact, he showed that there are at least two purely numerical ways to account for syllogistic reasoning. According to the additional method one should replace \(SaP\) by \(-S+P\), \(SiP\) by \(+S+P\), \(SeP\) by \(-S-P-1\), and \(SoP\) by \(+S-P-1\). Let \(\phi '\) be the result of the replacement of sentence \(\phi \). Then one can show that \(\phi _1, \cdots , \phi _n\vdash \psi \) iff \(\phi '_1 + \cdots + \phi '_n = \psi '\). According to the multiplicational method we replace \(SaP\) by \(\frac{P}{S}\), \(SiP\) by \(2SP\), \(SeP\) by \(\frac{-1}{SP}\), and \(SoP\) by \(\frac{-2S}{P}\). If we denote the result of the replacement in this way by \(\phi "\), it follows that \(\phi _1, \cdots , \phi _n\vdash \psi \) iff \(\phi "_1 \times \cdots \times \phi "_n = \psi "\). Both methods validate all and only the valid syllogism, but the multiplicational method has an advantage because it allows for a natural representation of negative terms: \(\overline{P}\) is represented as \(\frac{1}{P}\). Not using prime numbers makes the calculations easier, but note that the resulting systems are anything but a characteristics universalis. In fact, the resulting systems cannot be thought of as semantic systems at all.
 
8
Let \(M\) be assigned \(\langle 10, 3\rangle \), \(S\) be \(\langle 8, 11\rangle \), and \(P\) be \(\langle 5,1\rangle \). On this assignment, the syllogism MaP, \(\textit{MoS}/ \textit{SoP}\) is wrongly predicted to valid.
 
9
My proposal is thus closer to Sotirov’s [26] approach.
 
10
This is very well known, see, for instance [21, 26].
 
11
If we think of the extensional counterpart, this means that ‘some bike is red’ is true not because there actually exists a red bike, but rather that it is possible that such a bike exists. And indeed, what Leibniz considers to be the extension of a term (a set of individuals scattered around all worlds) is very much what in possible worlds semantics is its intension (cf. [13] and [12, p. 49]).
 
12
The idea behind these constraints is similar to [18] idea to assume that each term intensionally denotes a proper filter.
 
13
Proof: \(x \le y\) iff \(x \star y = x\) iff \(\overline{x \star y} = \overline{x}\) iff \(\overline{x} \circ \overline{y} = \overline{x}\) iff \(\overline{y} \le \overline{x}\).
 
14
In fact, we end up with something very close to the syllogistic counterpart of a semantics of Anderson and Belnap’s [1] notion of tautological (or relevant) entailment. Indeed, I have based the semantics on some ideas of van Fraassen [6], which is used to gives a semantics for this logic.
 
15
See the same paper for a proof why double negation holds in our semantics.
 
Literatur
1.
Zurück zum Zitat Anderson, A., & Belnap, N. (1975). Entailment (Vol. I). Princeton: Princeton University Press. Anderson, A., & Belnap, N. (1975). Entailment (Vol. I). Princeton: Princeton University Press.
2.
Zurück zum Zitat Aristotle, A. L. (1942). Prior analytics. New York: Oxford University Press. Aristotle, A. L. (1942). Prior analytics. New York: Oxford University Press.
3.
Zurück zum Zitat Bassler, B. (1998). Leibniz on intension, extension, and the representation of syllogistic inference. Synthese, 116, 117–139.CrossRef Bassler, B. (1998). Leibniz on intension, extension, and the representation of syllogistic inference. Synthese, 116, 117–139.CrossRef
4.
Zurück zum Zitat Bird, O. (1964). Syllogistic and its extensions. New Jersey: Prentice-Hall Inc. : Fundamentals of Logic Series. Bird, O. (1964). Syllogistic and its extensions. New Jersey: Prentice-Hall Inc. : Fundamentals of Logic Series.
5.
Zurück zum Zitat Couturas, L. (1901). La Logique de Leibniz. Paris: Felix Alcan. Couturas, L. (1901). La Logique de Leibniz. Paris: Felix Alcan.
6.
Zurück zum Zitat van Fraassen, B. (1969). Facts and tautological entailments. Journal of Philosophy, 66, 477–487.CrossRef van Fraassen, B. (1969). Facts and tautological entailments. Journal of Philosophy, 66, 477–487.CrossRef
7.
Zurück zum Zitat van Fraassen, B. (1973). Extension, intension, and comprehension. In M. Munitz (Ed.), Logic and ontology (pp. 101–131). New York: New York University Press. van Fraassen, B. (1973). Extension, intension, and comprehension. In M. Munitz (Ed.), Logic and ontology (pp. 101–131). New York: New York University Press.
8.
Zurück zum Zitat Friedman, W. (1980). ‘Calculemus’, Notre Dame. Journal of Formal Logic, 21, 166–174. Friedman, W. (1980). ‘Calculemus’, Notre Dame. Journal of Formal Logic, 21, 166–174.
9.
Zurück zum Zitat Glashoff, K. (2002). On Leibniz’ characteristic numbers. Studia Leibnitiana, 34, 161. Glashoff, K. (2002). On Leibniz’ characteristic numbers. Studia Leibnitiana, 34, 161.
10.
Zurück zum Zitat Glashoff, K. (ms), ‘On negation in Leibniz’ system of characteristic numbers’, manuscript. Glashoff, K. (ms), ‘On negation in Leibniz’ system of characteristic numbers’, manuscript.
11.
Zurück zum Zitat Glashoff, K. (2010). An intensional Leibniz semantics for Aristotelian logic. The Review of Symbolic Logic, 3, 262–272.CrossRef Glashoff, K. (2010). An intensional Leibniz semantics for Aristotelian logic. The Review of Symbolic Logic, 3, 262–272.CrossRef
12.
Zurück zum Zitat Ishiguro, H. (1972). Leibniz’ philosophy of logic and language. London: Duckworth. Ishiguro, H. (1972). Leibniz’ philosophy of logic and language. London: Duckworth.
13.
Zurück zum Zitat Leibniz, G. (1966a). Rules from which a decision can be made, by means of numbers, about the validity of inferences and about the forms and moods of categorical syllogisms. In G. H. R. Parkinson (Ed.), Leibniz: Logical papers (pp. 25–32) Oxford: Clarendon Press. Leibniz, G. (1966a). Rules from which a decision can be made, by means of numbers, about the validity of inferences and about the forms and moods of categorical syllogisms. In G. H. R. Parkinson (Ed.), Leibniz: Logical papers (pp. 25–32) Oxford: Clarendon Press.
14.
Zurück zum Zitat Leibniz, G. (1966b). A paper on ‘some logical difficulties’. In G. H. R. Parkinson (Ed.), Leibniz: Logical papers (pp. 115–121) Oxford: Clarendon Press. Leibniz, G. (1966b). A paper on ‘some logical difficulties’. In G. H. R. Parkinson (Ed.), Leibniz: Logical papers (pp. 115–121) Oxford: Clarendon Press.
15.
Zurück zum Zitat Leibniz, G. (1966c). Of the mathematical determination of syllogistic forms. In G. H. R Parkinson (Ed.) Leibniz: Logical papers (pp. 105–111) Oxford: Clarendon Press. Leibniz, G. (1966c). Of the mathematical determination of syllogistic forms. In G. H. R Parkinson (Ed.) Leibniz: Logical papers (pp. 105–111) Oxford: Clarendon Press.
16.
Zurück zum Zitat Leibniz, G. (1973). The nature of truth. In G. H. R. Parkinson (Ed.) Leibniz: Philosophical writings (pp. 93–95). Leibniz, G. (1973). The nature of truth. In G. H. R. Parkinson (Ed.) Leibniz: Philosophical writings (pp. 93–95).
17.
Zurück zum Zitat Leibniz, G. (1996). New essays on human understanding. In: P. Remnant & J. Bennet (Eds.), Cambridge texts in the history of philosophy. Cambridge: Cambridge University Press. Leibniz, G. (1996). New essays on human understanding. In: P. Remnant & J. Bennet (Eds.), Cambridge texts in the history of philosophy. Cambridge: Cambridge University Press.
18.
Zurück zum Zitat Lenzen, W. (1983). Zur extensionalen und “intensionalen” interpretationen der Leibnizschen logic. Studia Leibnitiana, 15, 129–148. Lenzen, W. (1983). Zur extensionalen und “intensionalen” interpretationen der Leibnizschen logic. Studia Leibnitiana, 15, 129–148.
19.
Zurück zum Zitat Lenzen, W. (1990). Das System der Leibniz’schen Logik. Berlin: De Gruyter. Lenzen, W. (1990). Das System der Leibniz’schen Logik. Berlin: De Gruyter.
20.
Zurück zum Zitat Łukasiewicz, J. (1951). Aristotle’s syllogistic from the standpoint of modern formal logic. Oxford: Clarendon Press. Łukasiewicz, J. (1951). Aristotle’s syllogistic from the standpoint of modern formal logic. Oxford: Clarendon Press.
21.
Zurück zum Zitat Martin, J. N. (1997). Aristotle’s natural deduction reconsidered. History and Philosophy of Logic, 18, 1–15.CrossRef Martin, J. N. (1997). Aristotle’s natural deduction reconsidered. History and Philosophy of Logic, 18, 1–15.CrossRef
22.
Zurück zum Zitat Parkinson, G. H. R. (1966). Leibniz: Logic papers. Oxford: Clarendon Press. Parkinson, G. H. R. (1966). Leibniz: Logic papers. Oxford: Clarendon Press.
23.
Zurück zum Zitat Pratt-Hartmann, I., & Moss, L. S. (2009). Logics for the relational syllogistic. Review of Symbolic Logic, 2, 647–683.CrossRef Pratt-Hartmann, I., & Moss, L. S. (2009). Logics for the relational syllogistic. Review of Symbolic Logic, 2, 647–683.CrossRef
24.
Zurück zum Zitat van Rooji, R. (2012). The propositional and relational syllogistic. Logique et Analyse, 55, 85–108. van Rooji, R. (2012). The propositional and relational syllogistic. Logique et Analyse, 55, 85–108.
25.
26.
Zurück zum Zitat Sotirov, J. (1999). Arithmetization of Syllogistic a la Leibniz. Journal of Applied Non-classical Logics, 9, 387–405.CrossRef Sotirov, J. (1999). Arithmetization of Syllogistic a la Leibniz. Journal of Applied Non-classical Logics, 9, 387–405.CrossRef
27.
Zurück zum Zitat Wittgenstein, L. (1933). Tractatus Logico-Philosophicus. London, New York: Kegan Paul, Trench, Trubner & Co. Wittgenstein, L. (1933). Tractatus Logico-Philosophicus. London, New York: Kegan Paul, Trench, Trubner & Co.
Metadaten
Titel
Leibnizian Intensional Semantics for Syllogistic Reasoning
verfasst von
Robert van Rooij
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-06080-4_13